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Abstract

& Historically, reproducibility has been the sine qua non of
experimental findings that are considered to be scientifically
useful. Typically, findings from functional magnetic resonance
imaging (fMRI) studies are assessed with statistical parametric
maps (SPMs) using a p value threshold. However, a smaller
p value does not imply that the observed result will be
reproducible. In this study, we suggest interpreting SPMs in
conjunction with reproducibility evidence. Reproducibility is
defined as the extent to which the active status of a voxel
remains the same across replicates conducted under the same
conditions. We propose a methodology for assessing reprodu-
cibility in functional MR images without conducting separate
experiments. Our procedures include the empirical Bayes
method for estimating effects due to experimental stimuli, the
threshold optimization procedure for assigning voxels to the
active status, and the construction of reproducibility maps. In
an empirical example, we implemented the proposed method-
ology to construct reproducibility maps based on data from
the study by Ishai et al. (2000). The original experiments
involved 12 human subjects and investigated brain regions
most responsive to visual presentation of 3 categories of

objects: faces, houses, and chairs. The brain regions identified
included occipital, temporal, and fusiform gyri. Using our
reproducibility analysis, we found that subjects in one of the
experiments exercised at least 2 mechanisms in responding to
visual objects when performing alternately matching and
passive tasks. One gave activation maps closer to those
reported in Ishai et al., and the other had related regions in
the precuneus and posterior cingulate. The patterns of
activated regions are reproducible for at least 4 out of 6
subjects involved in the experiment. Empirical application of
the proposed methodology suggests that human brains exhibit
different strategies to accomplish experimental tasks when
responding to stimuli. It is important to correlate activations
to subjects’ behavior such as reaction time and response
accuracy. Also, the latency between the stimulus presentation
and the peak of the hemodynamic response function varies
considerably among individual subjects according to types
of stimuli and experimental tasks. These variations per se
also deserve scientific inquiries. We conclude by discussing
research directions relevant to reproducibility evidence
in fMRI. &

INTRODUCTION

Functional magnetic resonance imaging (fMRI) has
emerged as an important technique for research into
human brain function. Many fMRI studies use an on-and-
off paradigm in which subjects respond alternately to
experimental and control stimuli. Usually, a statistical
method is applied at each voxel in space to test for
significant differences between the on and off condi-
tions. Findings from fMRI experiments are typically
assessed with the statistical parametric maps (SPMs),
which are reported by showing anatomy in the back-
ground, with colored overlays indicating those voxels
with a level of significance exceeding a p value threshold
(e.g., p < .05). Those suprathresholded voxels are,
presumably, brain regions that are most responsive to

the experimental stimuli. SPM-based inference with a
p value threshold makes an assumption that localized
changes in signal intensity differ as the subject performs
experimental and control tasks. This assumption can be
easily violated due to a variety of effects. In practice,
error can be separated from experimental effects
through properly designed replications and the use of
valid statistical methods.

The sources of error in functional MR data have been
discussed widely in the literature (e.g., Savoy, 2001;
Genovese, Noll, & Eddy, 1997). In general, errors con-
founding experimental effects can be grouped into three
types. First, transient errors affect individual responses
in the same way within a given session, but they vary
across distinct experimental sessions (Thye, 2000; Geno-
vese et al., 1997). These errors are caused by idiosyn-
cratic disturbances in the environment and add
between-session variations to functional images (Sku-
dlarski, Constable, & Gore, 1999). For example, subjects
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may become less attentive to stimuli due to fatigue or
drowsiness; stimulus sequence may have unexpected
order effects upon responses; or functional images
may be impaired by global changes of intensity between
sessions. Second, environmental, physiological, and psy-
chological factors randomly fluctuate throughout the
course of an experiment on a moment-by-moment basis.
The occurrence of those random effects can be assumed
to be equally likely across experimental sessions. Third,
factors related to imaging techniques also affect the
quality of observations. These factors include pulse
sequence, imaging parameters, and scanner perfor-
mance. Because errors are less likely to be reproducible,
it is possible to assess these errors through analyses of
reproducibility. Errors due to imaging techniques, on
the other hand, can also be minimized through proper
acquisition scheme selection. In this article, we particu-
larly make a distinction between transient and random
errors and will show that an estimate of between-session
errors can reduce bias in estimating experimental effects
in individual sessions.

Reproducibility, historically, has been the sine qua
non of experimental findings that are considered to be
scientific (Nickerson, 2000; Smith, Best, Cylke, &
Stubbs, 2000; Branch, 1999; Carver, 1993). In fMRI
studies, reproducibility requires that the same local
activation maps are likely to be observed in an exper-
imental replication. There is a common belief that a
smaller p value implies a stronger likelihood of getting
the same results on another replication of the same
experiment. Carver (1978) referred to this belief as the
‘‘reproducibility fantasy’’ and contended that ‘‘nothing
in the logic of statistics allows a statistically significant
result to be interpreted as directly reflecting the prob-
ability that the result can be replicated.’’ Clearly, a
smaller p value does not represent the complement
of the likelihood that a result will be reproducible; all
statistically significant findings must also provide evi-
dence of reproducibility regarding the experimental
outcome. Casey et al. (1998) studied reproducibility
of fMRI results across four institutes using a spatial
working memory tasks. Other studies evaluated analysis
methods on reproducibility of the same SPMs (Salli,
Korvenoja, Visa, Katila, & Aronen, 2001; Genovese et al.,
1997; Noll et al., 1997). In this article, we focus on a
methodology for assessing reproducibility without con-
ducting separate experiments; we suggest that one
should interpret SPMs in conjunction with evidence
of reproducibility in fMRI studies.

fMRI experiments are usually performed over a period
of time and are divided into smaller experimental ses-
sions (or experimental runs) in order to allow subjects
to rest. Image data are pooled across sessions and
multiple subjects to construct the final SPMs (Skudlarski
et al., 1999; Constable and Skudlarski, 1995). The classic
paradox raised by Meehl (1967) remarked that the
apparent power due to larger sample sizes also increases

the possibility of making a Type I error. In fMRI studies
with multiple sessions, reproducibility is easily assessed
by appropriate information integration. The reproduc-
ibility of a voxel is defined here as the degree (number
of times) to which the active status of the voxel, in
responding to stimuli, remains the same across repli-
cates (out of M experimental sessions) implemented
under the same conditions. In this study, we also
categorize voxels according to reproducibility; a voxel
is strongly reproducible if its active status remains
the same in at least 90% of the sessions, moderately
reproducible in 70–90% of the sessions, weakly repro-
ducible in 50–70% of the sessions, and otherwise not
reproducible.

Statistical methods for analyzing fMRI data have to be
sensitive to small signal changes (typically <1%) and
robust to mild violation of distributional assumptions.
The general linear model has been commonly used for
analyzing fMRI data in experiments involving multiple
types of stimuli (Friston et al., 1995). In this study, we
suggest augmenting the model slightly, by assuming
that the model parameters in individual sessions are
random samples from a known distribution. The aug-
mented model is a special case of the empirical Bayes
methodology, which provides a way of borrowing
information across sessions to improve parameter esti-
mates for each individual session (Rubin, 1980). In fMRI
studies, experimental sessions may involve different
tasks. The augmented model also allows for examining
task effects on subjects’ responses. The general linear
model or the empirical Bayes method always generates
voxelwise statistics (e.g., t values); individual voxels are
assigned to the active/inactive status according to a
threshold on the statistics. In this study, we suggest
selecting a threshold by maximizing the overall repro-
ducibility of active/inactive outcomes for all voxels. It
has been observed frequently that, even with the same
scanner and experimental paradigm, subjects can vary
in the degree of activation. Therefore, different thresh-
olds are appropriate for different subjects (Genovese,
Lazar, & Nichols, 2002). The proposed threshold opti-
mization procedure proceeds on an individual subject
basis. In brief, the proposed methodology includes (i)
the empirical Bayes method for estimating effects due
to experimental stimuli, (ii) a threshold optimization
procedure for assigning voxels to the active status, and
(iii) construction of reproducibility maps.

The proposed methodology was implemented using
data from the study by Ishai, Ungerleider, Martin, and
Haxby (2000). These experiments involved visual pre-
sentation of three categories of objects: faces, houses,
and chairs. The study found that a majority of voxels,
which were maximally responsive to one of these
objects, responded significantly to other objects as well
(Ishai, Ungerleider, Martin, Shouten, & Haxby, 1999;
Ishai et al., 2000). Here, we reanalyzed the data from
the perspective of reproducibility. The reproducibility
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maps proved to be a useful supplement to the SPMs in
the Ishai et al. study. In the Methods, we present the
methodology for constructing reproducibility maps,
including the empirical Bayes method, the threshold
optimization procedure, and map construction. In the
Results, we present the reproducibility maps for the
fMRI data in the Ishai et al. study. Finally, we suggest

research directions that rest on reproducibility evi-
dence in fMRI studies.

RESULTS

Figure 1a and b shows the receiver–operator character-
istic (ROC) curves comparing results from the general

Figure 1. (a) ROC curves for

the six subjects in Experiment 1.

The r and k indices and the
threshold selected for each

subject are also listed below the

curves. (b) ROC curves and r

and k indices for the six subjects
in Experiment 2.
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linear model in Equation 4 and the empirical Bayes
approach in assessing the objects versus control con-
trast. For the 12 subjects, the curves associated with the
empirical Bayes approach all lie above those of the
general linear model. In assessing reproducibility, the
optimal decision has to be based on the bi estimates in
the individual session (i.e., computing Rv for each
voxel). The ROC curves indicate that the empirical Bayes
approach can improve sensitivity with little cost in terms
of increasing the false alarm rate; the results are also free
of thresholds. The r and k indices are also listed in the
figures for every subject. These indices were derived
from results of the empirical Bayes analysis and are the
maximum obtainable values given all possible thresh-
olds. The k values are generally smaller than the r values
and closer to each other as k becomes large (see the
examples in Subjects 3, 5, and 11). It is also interesting to
note that, on the average, reproducibility in Experiment
2 is stronger than in Experiment 1. In threshold optimi-
zation, a threshold for constructing reproducibility maps
is a larger t value if the observed subject effects are
reliable, and is a smaller t value otherwise (see a
comparison between Subjects 2 and 3).

The voxel t values comparing effects between match-
ing and passive tasks (i.e., effect sizes) in Experiment 1
are grouped according to voxels’ reproducibility (i.e.,
the Rv values). The distributions of these t values
according to reproducibility are plotted in Figure 2.
The plots in the figure clearly show bimodal distribu-
tions for at least four out of six subjects. The patterns of
these plots are robust to the threshold, that is, the same
bimodal patterns persisted when the thresholds listed in
Figure 1a were shifted to upper or lower bounds. These
results indicate that there were at least two distinct

mechanisms involved when subjects performed the
matching and passive tasks. One mechanism has posi-
tively distributed t values and the other has negatively
distributed t values. In the figure, Subjects 6 and 10
clearly show two mechanisms in performing the two
tasks. The reproducibility maps for the two subjects are
given in Figure 3. In constructing these maps, three-
dimensional rendering was performed with the mri3dX
software (http://www.aston.ac.uk/lhs/staff/singhkd/
mri3dX/index). The colored voxels in these maps are
either strongly or moderately reproducible. The maps
suggest that a major portion of reproducible voxels are
distributed in the temporal and occipital regions which
concur with the SPMs in Ishai et al. (2000). The maps also
show that the two subjects engage regions in the bilateral
precuneus and posterior cingulate. Subject 6 also shows
activations in the pre- and postcentral gyri and cerebel-
lum. These regions all had a longer latency between the
stimuli presentation and peak of the hemodynamic
response function (HRF). The response waveforms for
selected regions are plotted in Figure 4 for Subject 6. In
delayed match-to-sample tasks, subjects indicated which
choice stimulus matched a sample object by pressing a
button with the right or left thumb. In passive viewing,
subjects simply responded to stimuli without recording a
sample stimulus or making a decision on choice stimuli.
Ishai et al. (1999) indicated that the delayed matching
task required more attention relative to passive viewing.
According to the reproducibility maps in Figure 3, several
regions engage in performing alternately the two tasks
especially for Subject 6.

Figure 5 shows the densities of those t values
comparing matching and drawing tasks in Experiment
2. The t values have unimodal distributions for all

Figure 2. The distributions of t

values comparing matching and

passive tasks in Experiment 1.
The distributions are grouped

according to reproducibility of

voxels. The t values are on the

vertical axis and the
reproducibility of voxels

is on the horizontal axis.
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subjects. This result confirms the findings of Ishai et al.
(2000) that photographs and line drawings evoked the
same pattern of responses regardless of the low-level
features of the stimuli, such as spatial frequency or
texture. The t values for Subject 3 cluster around the
positive side of the scale, which deviates slightly from
other subjects in the same experiment. The reproduc-
ibility maps for Subjects 2 and 3 are shown in Figure
6. The region of activation for both subjects are also
distributed in the temporal and occipital regions.
Subject 2 had lower reproducibility values compared
with other subjects. If we included weakly reproduc-
ible (Rv/M > 50%) voxels, the active regions would
have been even more similar. The waveforms of the
hemodynamic response for selected regions are plot-
ted in Figure 7. We note that data for Subject 3 gave
the highest reliability values among all 12 subjects (see

Figures 1 and 2). This subject also has a higher
average HRF amplitude for drawing tasks compared
with matching tasks.

DISCUSSION

Reproducibility evidence can be assessed in most fMRI
studies conducted with multiple sessions. In this arti-
cle, we have proposed a methodology for assessing the
evidence with reproducibility maps in conjunction with
SPMs. The proposed methodology includes (i) the
empirical Bayes method, (ii) a threshold optimization
procedure, and (iii) construction of reproducibility
maps. We implemented the methods to reanalyze data
from the study by Ishai et al. (1999, 2000) and derived
reproducibility maps for those voxels that responded
consistently to experimental stimuli. The maps were

Figure 3. Reproducibility

maps comparing Subjects 6

and 10 in Experiment 1.
Coordinates are in the

normalized space of the

Talairach and Tournoux (1988)

brain atlas. The selected slices
are all in coronal sections.

These t values plotted in Figure

2 are also referred to in this
figure. Colored voxels in green

regions have positively

distributed t values and those in

red regions have negatively
distributed t values.
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constructed for individual subjects without averaging
data across subjects. The ensuing reproducibility maps
suggest a few important findings. First, the amount of
error differs in individual subjects. Experimental or
statistical control over these errors may not make
subjects completely interchangeable. It is important to
consider separate thresholds for individual subjects,
that is, less stringent thresholds for subjects that
have larger errors. Reproducibility maps, constructed
on an individual threshold basis, suggest experimental
results that would have been observed if subjects were
equally reliable. Second, subjects may exercise different
strategies in performing experimental tasks while re-
sponding to stimuli. Based on reproducibility maps,
brain regions evidencing task effects may be correlated
with subjects’ behavior such as reaction time and
response accuracy. Furthermore, it is desirable to sepa-

rate brain regions that are locked to experimental tasks
from those locked to stimulus presentation. The pro-
posed methodology finds different regions locked to
various events and is generalizable to other more com-
plicated designs. Third, even within the same brain
region, latencies between stimulus presentation and
the peak of the hemodynamic response vary consider-
ably among subjects according to types of stimuli and
experimental tasks. fMRI studies using the on-and-off
paradigm have often incorporated an HRF model into
the design matrix. The variations per se also deserve
scientific inquiry. The use of the proposed methodology
is not limited to the on-and-off designs. With event-
related designs, for example, the fMRI data can be par-
titioned into smaller sessions, each being a replicate of
the other; reproducibility can be assessed by an analogy
of the proposed method. In conclusion, we have tried to
take a step toward assessing reproducibility in fMRI
studies without conducting further experiments, and
we hope that research in this area will be encouraged.

METHODS

Experimental Data

In the empirical examples, fMRI data were collected from
12 subjects in two experiments (Ishai et al., 2000); the data
sets were supported by the US National fMRI Data Center.
The image data were preprocessed with correction for
motion artifacts. These preprocessed data were analyzed
in this study. The experiments examined the representa-
tion of objects in the human occipital and temporal cortex.
In Experiment 1, six subjects were presented with gray-
scale photographs of houses, faces, and chairs. For each
subject, there were 12 experimental sessions that were
subdivided into two tasks. In the passive viewing task, a
stimulus (houses, faces, chairs) was presented at a rate of 2
sec followed by a phased, scrambled picture at the same
rate, which served as the control stimulus. In the delayed
matching task, a stimulus was followed, after a 0.5-sec
delay, by a pair of choice stimuli presented at a rate of 2 sec.
In Experiment 2, the other six subjects performed the
delayed match-to-sample task with photographs and line
drawings of houses, faces, and chairs. In the original
reports (Ishai et al., 1999, 2000), three orthogonal con-
trasts were examined in the two experiments, namely,
meaningful objects (i.e., faces, houses, and chairs) versus
control stimuli (i.e., phased, scrambled pictures), faces
versus houses/chairs, and houses versus chairs. In the
current study, we only construct reproducibility maps for
voxels that responded to all three objects (i.e., the objects
versus control stimuli contrast).

The General Linear Model

In constructing SPMs with the general linear model,
observations in each voxel are normally pooled over

Figure 4. Forms of the hemodynamic response to objects in selected

regions for Subject 6.
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sessions before estimating model parameters. Let y be the
vector of n pooled observations. The model assumes that

y ¼ Xbpool þ e ð1Þ

where X is the design matrix and bpool is the vector
containing the unknown regression parameters. The
design matrix contains indicator variables or regressors
that correspond to the linear effects investigated in the
fMRI experiment. Each contrast (a column in X) has a
corresponding parameter in the bpool vector. In order to
apply a statistical test, the y observations are assumed to
have a Gaussian distribution with mean Xbpool and
variance s

2In, where s
2 is the residual variance and In is

the (n � n) identity matrix. The standard least-squares
method gives the following bpool and s

2 estimates:

b̂pool ¼ ðX0XÞ�1X0y ð2Þ

ŝ2 ¼ 1

n � k
k y � Xb̂pool k2 ð3Þ

where k is the number of columns in X and X0 denotes
the transposition of X. Inferences about each parameter
can be made by computing a t statistic, a ratio that
compares the parameter estimate with the standard
error of the estimate. The standard error of each b̂pool

estimate is the corresponding diagonal element in
ŝ

2(X0X)�1, which is the variance of b̂pool. The associated
p value is the probability of exceeding an observed t value
in a Student’s t distribution with n � k degrees of
freedom. Each voxel is classified active/inactive according
to a preselected p value (e.g., p < 10�4 in the study of
Ishai et al., 2000). This p value can be adjusted for

multiple voxels using the Random Field Theory as
discussed by Friston et al. (1994; 1995).

In fMRI experiments, b̂pool is estimated under the
assumption that observations in individual sessions are
interchangeable. Empirical studies have suggested aver-
aging the images from M experimental sessions and then
calculating t statistics using those averaged images. If
experimental sessions differ in order of stimulus presen-
tation (order of faces, houses, and chairs), as well as task
performance (matching vs. drawing), individual regres-
sion parameters should be obtained from each session
separately (Skudlarski et al., 1999; Constable and Sku-
dlarski, 1995). This procedure is effective because indi-
vidual statistics are not affected by substantial variations
among sessions. Specifically, Equation 1 can be modified
for each session as

yi ¼ Xibi þ ei ð4Þ

where Xi denotes the partition on submatrix in X
corresponding to the ith session. Here, we still assume
that yi has a Gaussian distribution with mean Xibi and
variance si

2Ini
. Researchers have suggested using

t statistics based on Equation 4 to compare test–retest
reliability in functional MR images across sessions (Maitra,
Roys, & Gullapilli, 2002; Skudlarski et al., 1999; Genovese
et al., 1997).

The Empirical Bayes Method

It is generally desirable to assign different weights to
individual bi’s in Equation 4 for combining these esti-
mates to assess the responses over sessions. Here, we

Figure 5. The distributions of

t values comparing delayed

matching with photographs
and line drawings in

Experiment 2. The t values are

on the vertical axis and the

reproducibility of voxels is on
the horizontal axis. The ±

values are on the vertical axis

and the reproducibility of
voxels is on the horizontal axis.
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propose the empirical Bayes method for weighing infor-
mation across sessions. The usual empirical Bayes esti-
mate of bi can be represented as a weighted combination
of contributions from sessions as a whole (i.e., bpool) and
the individual session (i.e., bi). Essentially, the method
provides a way for borrowing information across sessions
to rectify biased estimates at each individual session
(Rubin, 1980). With the method, Equation 4 is augment-
ed by assuming a priori the bi for i = 1, . . ., M (M = 12 in
the work of Ishai et al., 2000) are random samples from a
multivariate Gaussian distribution with mean Ai and a
common variance–covariance matrix �.

In fMRI applications, different experimental sessions
may involve separate tasks. For example, subjects in
Experiment 1 performed six delayed match-to-sample
tasks and six passive viewing tasks. It would also be
interesting to estimate bi according to the types of tasks.
Let B be a k* � k matrix containing the multivariate
regression parameters, where k* denotes the number of
task effects examined between sessions and k is the
length of bi. We assume that

bi ¼ B0xi
	 þ ni ð5Þ

where the transposition of xi* is the ith row in X*,
which is the design matrix for estimating bi. (Note that
Xi in Equation 4 is the design matrix for estimating the

waveform in the ith voxel, and X* is the design matrix
for estimating bi for i = 1, . . ., M.) Based on the model,
the mean of bi is Ai = B0xi* and the variance of ni is the
common �. Given our assumptions, the posterior
expectation of bi can be expressed as:

Eðbi j s2
i ; Ai;�;Xi; yiÞ � hi

¼ ��1 þ s�2
i ðX0

iXiÞ
� ��1

��1Ai þ s�2
i X0

iyi

� �
ð6Þ

and its cross product (i.e., the conditional covariance) is

Eðbib
0
i j s

2
i ; A;�;Xi; yiÞ� Hi

¼ ��1 þ s�2
i ðX0

iXiÞ
� ��1þhih

0
i ð7Þ

The estimation of si
2, Ai, and � can be accomplished

via iterative Expectation Maximization (EM). Equations 6
and 7 constitute the E-step in the algorithm. We briefly
outline the M-step for estimating unknown parameters.
Let Z be a matrix containing all estimated bi in Equation
6, that is, Z0 = [h1, h2, . . ., hM]. At the (r + 1)th
iteration, the algorithm computes

A
ðrþ1Þ
i ¼ B

0ðrÞx	
i ;where BðrÞ ¼ ðX	0X	Þ�1X	0ZðrÞ ð8Þ

�ðrþ1Þ ¼ 1

M � k	

X
i

H
ðrÞ
i � 1

M
AðrÞA0ðrÞg;where

(

AðrÞ ¼
X

i

A
ðrÞ
i ; and ð9Þ

Figure 7. Forms of the hemodynamic response to objects in selected

regions for Subject 2 (top) and Subject 3 (bottom).

Figure 6. Reproducibility maps comparing Subjects 2 and 3 in

Experiment 2. Voxels in colored regions are at least moderately

reproducible according to the definition in the main text.
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s
2ðrþ1Þ
i ¼ 1

n � k
k yi � X ib

ðrÞ
i k2 ð10Þ

The E- and M-steps are iterated until the sequence of
parameter estimates converges. An interested reader
may refer to Rubin (1980) and Dempster, Laird, and
Rubin (1977) for the rationale underlying EM proce-
dures. Friston et al. (2002) also detailed the EM
procedures for Bayesian inference in neuroimaging
and suggested using a weighted least squared estimate
for B(r) in Equation 8. Because the data are balanced
such that each session has the same number of ob-
servations, the two estimates will not differ dramatically.

By analogy with the general linear model, the t
statistics for empirical Bayes estimates of the bi in
Equation 6 can be computed by the use of the
corresponding posterior standard deviations given
the maximum likelihood estimates of Ai and �. The
analyses below are restricted to those t values that test
responses to all three stimuli. (Note: For each voxel,
there are 12 t values, 1 for each session.) Alternatively,
t statistics can also be computed for parameters in B.
Here, we are interested in the effect due to different
tasks, that is, the indicator variable in X* with score
‘‘1’’ for the passive task and ‘‘�1’’ for the matching
task in Experiment 1, and score ‘‘1’’ for the drawing
task and ‘‘�1’’ for the matching task in Experiment 2.
The t values correspond to ‘‘random-effects’’ analysis
because they test the effect size against the session-to-
session variability � that is treated as a random effect.
(Note: For each voxel, there is one t value corresponding
to the task effect.)

ROC Analyses of Statistical Methods

Statistical methods can be evaluated in their capacity
to differentiate the truly active voxels from the truly
inactive voxels. The ROC approach has been recom-
mended for comparing statistical methods in fMRI data
analyses (Maitra et al., 2002; Skudlarski et al., 1999;
Genovese et al., 1997; Friston, Holmes, Poline, Price,
& Frith, 1996). Sensitivity is defined as the proportion
of truly active voxels that are classified active. This
proportion represents the power of a statistical meth-
od. False alarm rate, on the other hand, is the
proportion of truly inactive voxels that are classified
active and contribute to Type I error. Sensitivity can
always be increased by lowering the threshold, a
situation in which the false alarm rate is inflated. In
fMRI studies, the true status of each voxel is unknown,
but the two proportions can be estimated from the
data. Genovese et al. (1997) suggested estimating the
proportions at a particular threshold by assuming a
mixed binomial model underlying the number of times
(out of M replications) that a voxel is consistently
classified active. Let pA and pI denote sensitivity and
false alarm rate, respectively, and Rv represents the

number of replications, out of M, that a voxel is
classified active (Rv refers to the reproducibility of
the vth voxel by definition). The mixed binomial
model assumes that Rv is a random sample from

M

Rv

0
@

1
A lpRv

A ð1 � pAÞðM�RvÞþð1�lÞpRv

I ð1�pIÞðM�RvÞ
h i

ð11Þ

where l is the proportion of truly active voxels. The
model in Equation 11 can easily be generalized to
multinomial cases in which there is one l parameter and
several threshold values, each with its corresponding
paired ( pA, pI) parameters.

The ROC curve is a bivariate plot of sensitivity
against false alarm rate for different thresholds. The
sensitivity of a particular statistical method can also
vary according to subjects, stimulus conditions and
other unknown factors. Maitra et al. (2002) extended
the model in Equation 11 by incorporating spatial
dependence among nearby voxels. The extended mod-
el gave slightly more conservative estimates of pA and
pI. Our analyses used a maximum likelihood proce-
dure to estimate the l and paired ( pA, pI) parameters
for selected thresholds; this mixed multinomial model
is similar to the proposal of Genovese et al. (1997, p.
507). We also used the exponential model suggested
by England (1988) for smoothing and extrapolating
the ROC curves that were interpreted in a relative
fashion between methods and subjects in the empir-
ical example.

Decision Threshold Optimization

In fMRI experiments, it is important to understand the
extent to which replicates made under the same con-
ditions give the same results. The observed proportion
of agreement between the true active/inactive status and
classification result is pO = lpA + (1 � l)(1 � pI) This
proportion can be corrected for chance, which is found
by summing over the agreement diagonals, the product
of the proportions for the row and column of the cell.
We denote the agreement expected by chance as pC =
lt + (1 � l)(1 � t), where t = lpA + (1 � l)pI. Using
the ROC model, the proportion of agreement corrected
for chance is

r ¼ pO � pC

1 � pC
ð12Þ

which is the Kappa index due to Cohen (1960). The
threshold value at the maximum r can be selected as the
optimal operating point on the ROC curve. For a total of
k contrasts in the design matrix, there will be 2k possible
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outcomes with combinations of the active/inactive
status. With the ROC approach, the optimal threshold
must be selected for each contrast. An alternative
approach would identify the optimal operating points
at maximum reproducibility in the 2k outcomes across
the M replications. With this approach, the k thresholds
can be identified simultaneously without use of the ROC
models. In the literature, there are several indices useful
for assessing the reproducibility of categorical outcomes,
for example, the Kappa-type coefficients (Roberts &
McNamee, 1998; Posner, Sampson, Caplan, Ward, &
Cheney, 1990; Shouten, 1980; Fleiss & Cohen, 1973) Let
nij be the number of times that the ith voxel is assigned
to the jth outcome out of M replications. Following
Shouten (1980), the agreement between outcomes j and
k can be assessed by

kjk ¼
PjPk �

P
i nijnik=½MðM � 1ÞV �

PjPk
ð13Þ

where Pj is the sum of nij/(MV) across V voxels and Pk

is computed by analogy. The reproducibility of out-
comes can be summarized by a weighted average of kjk,
that is,

k ¼
P

j 6¼k PjPkkjkP
j 6¼k PjPk

ð14Þ

The optimal thresholds for the k contrasts can be
decided by maximizing k. In empirical applications, we
have found that the solution to l in the mixed multino-
mial model is not unique, but in a small range. These l

estimates gave almost identical ROC curves. In the
empirical example below, the optimal threshold was
selected based on k, but values of both sorts of indices
are presented. The maximum r value was computed
using the average of l estimates.

Reproducibility Maps

Given an optimal threshold, the truly active voxels must
be strongly reproducible (i.e., Rv/M above 90%). Some
truly active voxels may exhibit moderate reproducibility
(i.e., Rv/M between 70% and 90%) due to errors in
estimating t values. In our empirical examples, we
selected strongly reproducible voxels to construct the
reproducibility maps but included voxels that were
moderately reproducible and spatially proximate to
strongly reproducible voxels.
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