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Likelihood ratio (LR) tests for association and for interaction are examined for three-way contingency tables, particularly the widely used
2 × 2 × K table. Mutual information identities are used to characterize the information decomposition and the logical relationship between
the omnibus LR test for conditional independence across K strata and its two independent components, LR tests for interaction and for
uniform association. The latter two tests are logically connected to formulating a natural two-step test for conditional independence. The
proposed two-step test with reduced nominal levels is suggested instead of the Breslow–Day test and the Cochran–Mantel–Haenszel test.
This yields efficient interval estimation for both the interaction parameter and the common odds ratio compared with using the Mantel–
Haenszel estimate. This allows the development of power analysis for testing general hypotheses of varied interactions, using an invariant
Pythagorean law of relative entropy.

KEY WORDS: Breslow–Day test; Cochran–Mantel–Haenszel test; Mutual information; Pearson test; Three-way interaction.

1. INTRODUCTION

The analysis of contingency tables with three-way classifica-
tions has been much studied in the literature, notably in the case
of a 2 × 2 × K table. This analysis is often concerned with test-
ing for association within and homogeneity across the strata.
Overall, testing conditional independence of the table can be
found by considering not only a direct test, but also a combi-
nation of the two previous tests. The aim of this article is to
develop tests based on information identities that give indepen-
dent tests for both steps, allowing them to be naturally com-
bined into a two-step test for conditional independence. These
tests are also contrasted with tests that are usually used to test
each step individually, but do not necessarily have the required
independence to allow them to be combined into a two-step test.

The literature concerning testing of all three quantities in-
dividually is well established. Bartlett (1935) initiated a test
for no interaction across strata (i.e., equality or homogeneity
of odds ratios) and derived an estimate of the common odds
ratio (COR) with a pair of 2 × 2 tables. Norton (1945) ex-
tended the discussion to finite K tables, and Simpson (1951)
supplied interpretations of various interactions. Woolf (1955)
discussed estimation and testing for the COR, and Roy and
Kastenbaum (1956) proved that Bartlett’s estimate is a condi-
tional maximum likelihood (ML) estimate given the margins of
each stratum in an I × J × K table. The classical approaches
to testing homogeneity or, equivalently, to testing the converse
(interaction) were based mainly on weighted chi-squared tests,
and were further discussed by Plackett (1962) and Goodman
(1964). On the other hand, a chi-squared test with 1 df for two-
way independence across K strata was proposed by Cochran
(1954) and Mantel and Haenszel (1959). This is the Cochran–
Mantel–Haenszel (CMH) test for conditional independence or
partial association (Birch 1964; Goodman 1969) that has been
widely used in the literature.
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These early studies led to further analyses of three-way ta-
bles for estimating the COR, testing association, and testing in-
teraction across strata. For 2 × 2 × K tables, the Bartlett test
for interaction involves inconvenient computations for the con-
ditional ML estimate (given the margins of each 2 × 2 table)
of the COR, as noted by Birch (1963). To relax the compu-
tational burden, Goodman (1964) discussed approximate chi-
squared tests and tests using conditional or unconditional ML
estimate (fixing only one margin of each 2×2 table) of the COR
were discussed by Gart (1971), Zelen (1971), and Halperin et al.
(1977). The score test for homogeneity (Breslow and Day 1980)
gained popularity as the Breslow–Day (BD) test because of its
ease of computation by using the Mantel–Haenszel (MH) COR
estimate, although Paul and Donner (1992) found in a simula-
tion study that score tests for interaction tend to be conservative
when the odds ratios are unequal.

A related topic of special interest in biomedical research is
the interval estimation of the COR between strata. Woolf (1955)
introduced weighted logit COR estimators. The popular MH
COR estimate is defined with intuitive appeal and is asymptot-
ically efficient when the common odds ratio is equal to unity
(see, e.g., Birch 1964; Nurminen 1981; McCullagh and Nelder
1989). For the finite strata case with moderate to large data
sets, Tarone, Gart, and Hauck (1983) and Hauck (1984) showed
through simulation studies that a conditional ML estimate is
generally superior to the unconditional ML estimate or the MH
estimate in terms of bias and precision.

Whereas testing homogeneity and estimating the COR have
been much discussed in the literature, testing interaction and
testing partial association seldom have been studied together.
Goodman (1969, 1970) and Bishop, Fienberg, and Holland
(1975) discussed these hypotheses using likelihood ratio (LR)
tests for the parameters of log-linear models. In the literature of
educational statistics and psychometrics, analysis of three-way
tables using the log-linear models and the CMH test has been
a popular approach to identifying test items exhibiting differ-
ential item functioning (DIF) between two social groups (e.g.,
Mellenberg 1982; Holland and Thayer 1988; Swaminathan and
Rogers 1990; Wang and Yeh 2003). These studies generally first
test for interaction using different methods, then test for partial
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association using mainly the CMH test. However, they over-
looked a fact, noted by Goodman (1969), that the log-likelihood
of the conditional independence can be expressed as a sum of
two independent terms. Specifically, the sum is the omnibus LR
test for conditional independence. The first summand tests for
interaction, the heterogeneity of odds ratios, termed the nonuni-
form DIF in psychometrics. The second summand is used to test
for homogeneous or uniform association within strata, called
the uniform DIF, or the partial association by Birch (1964) and
numerous follow-up studies.

Unlike classical analysis of variance with continuous vari-
ables, these three LR tests are logically related; that is, a signif-
icant interaction tested by the first test implies the rejection of
the other two hypotheses. Thus it is crucial to analyze how data
information shared between the two independent summands af-
fects interpretation of the three LR tests at their associated lev-
els of significance. If the same nominal level is used for all three
tests, then the omnibus test can be inconsistent with either one
of the other two terms, such that it becomes less sensitive than
the combination of the other two terms—that is, a naive two-
step test that uses the second term to test for uniform associa-
tion only when the first test for homogeneity is not rejected. The
drawback can be corrected by using reduced nominal levels,
against which the two independent terms are tested. In the liter-
ature, this logical relation between the two hypotheses has re-
ceived little attention, and the two hypotheses are usually tested
separately using the BD and the CMH tests. They often are
assumed to be independent when used, which is not the case.
A few examples will illustrate the difference between using the
two popular classical tests and using the two-step LR tests for
the two hypotheses.

The primary goal of this study was to examine certain likeli-
hood information identities for the three LR tests in three-way
tables, to develop a two-step test for comparison with the om-
nibus test for conditional independence. The secondary goal
was to develop a power analysis for testing general hypothe-
ses of unequal interactions in three-way tables, which extends
the notion and application of a two-step test. For example, the
probability of observing the data under arbitrary patterns of in-
teractions can be evaluated, and efficient interval estimation of
the interaction parameter and of the COR can be derived from
the two-step test procedures.

The article is organized as follows. The background of testing
hypotheses with a 2 × 2 × K table is briefly reviewed in Sec-
tion 2. Information identities that divide the data log-likelihood
into orthogonal components are discussed in Section 3. As an
extension of an information identity of Cheng et al. (2008,
lemma 2), power analysis at alternative varied interactions, or
unequal ratios of odds ratios, is given in Theorem 1 of Section 3.
The three LR tests are examined using the notion of a two-step
test, which also yields efficient interval estimation of the inter-
action parameter and of the COR as a byproduct. Application
of the two-step test is illustrated with examples in Section 4.
Two data analyses of the BD and the CMH tests in the litera-
ture are examined against the proposed two-step LR tests, and
the performances are compared in terms of p-values and inter-
val estimates of the COR in Section 5. A power evaluation of
unequal odds ratios as a consequence of the two-step test in the
examples is illustrated. Overall, this study constructs a geomet-
ric frame of testing conditional independence, interaction, and

uniform association and develops the two-step LR tests based
on the mutual information identity.

2. TESTING HYPOTHESES FOR 2 × 2 × K TABLES

Statistical inference for association between two categori-
cal variables is of considerable interest in many applications.
Data from a case-control study with a dichotomous risk fac-
tor are often stratified into 2 × 2 tables by a third variable
with K levels. Let (X,Y,Z) denote the three-way categorical
vector, and let (Xk,Yk) denote pairs of dichotomous variables,
where Z is the K-level (k = 1, . . . ,K) stratum variable. The
observed data are frequency counts nijk of subjects with con-
dition i [i = 1 (case), 2 (control)] and exposure j [j = 1 (ex-
posed), 2 (nonexposed)], which fall in stratum k, k = 1, . . . ,K.
Let U = {Uk = (n11k,n12k;n21k,n22k), k = 1, . . . ,K} denote the
observed K strata of 2×2 tables. We use a dot notation for sum-
mation over a subscript; that is, n··· = n denotes the total sample
size, n1·k is the number of cases in stratum k, and n·2k is the total
number of nonexposed subjects in stratum k, and so on.

In this study it is assumed that data can arise from a
wide range of experiments, including multinomial, indepen-
dent multinomial, Poisson, or hypergeometric sampling across
strata. The inference in this study is essentially independent
of these sampling schemes, because the issue of testing homo-
geneity and conditional independence between the two main
variables, the case and the risk factor, is discussed via con-
ditional likelihood inference across strata. Let the odds ra-
tios of the 2 × 2 tables be defined by ψk = p11kp22k/p12kp21k,
k = 1, . . . ,K, where pijk = P(X = i,Y = j,Z = k), i, j = 1 or 2,

are the cell proportions. The null hypothesis of independence
between the two variables in each stratum is the hypothesis of
conditional independence, denoted by

H0 :ψk = 1 for k ∈ {1, . . . ,K}. (2.1)

The traditional test for H0 is the Pearson chi-squared test using
the statistic

χ2
PE =

K∑
k=1

2∑
i,j=1

(nijk − ni·kn·jk/n··k)2

ni·kn·jk/n··k
. (2.2)

It approximates the chi-squared distribution with K df, denoted
by χ2

K , which admits a continuity correction for each stratum of
small sample size (Yates 1934).

A widely discussed issue is the hypothesis of equal odds ratio
across K strata. Testing equal odds ratios between strata was
initially studied as the testing of no second-order interaction by
Bartlett (1935). This is the hypothesis of COR,

H1 :ψk = ψ for k ∈ {1, . . . ,K} (2.3)

for a positive constant ψ . By definition, (2.1) is a special case
of (2.3), that is, H0 ⊂ H1. Thus rejection of H1 logically implies
rejection of H0, and the implication is valid against a common
nominal level of test, say α = 0.05. The individual tests for H0
and H1 can yield varying significant results against this logical
implication. Assuming COR, denoted by ψ under H1, the MH
estimate of ψ is defined as

ψMH =
∑K

k=1(n11kn22k/n··k)∑K
k=1(n12kn21k/n··k)

. (2.4)
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A popular test that can be easily computed for H1 uses the esti-
mate ψMH . The BD score test is defined as

χ2
BD =

∑
k

e2
k

var(n11k|ψMH)
. (2.5)

Here the adjusted cell estimates, ek, and the denominator vari-
ance can be easily found (e.g., Agresti 2002, p. 232). Under H1,
the test statistic (2.5) approximates the chi-squared distribution
with K − 1 df.

Also designed for testing H0 is the CMH test, defined by the
statistic

χ2
CMH = (

∑K
k=1 n11k − ∑K

k=1 n1·kn·1k/n··k)2∑K
k=1{n1·kn2·kn·1kn·2k/n2··k(n··k − 1)} . (2.6)

The test statistic (2.6), derived from an estimating equation, as-
sumes equality of the K odds ratios, that is, ψk = ψ , the COR.
In essence, it is used to test the hypothesis H2 = (H0|H1); that
is, given a COR ψ ,

H2 :ψ = 1, (2.7)

which defines the same hypothesis H0 implicitly conditioned on
that H1 is not rejected. It follows that rejection of H1 logically
implies rejection of H2. This logical relation is the basis of the
two-step tests discussed in this study. The test statistic (2.6) has
two equivalent versions that approximate the chi-squared distri-
bution with 1 df. Cochran’s test (1954) is defined with the inde-
pendent binomial distributions model, while the MH version is
derived from a Fisher’s exact test hypergeometric distribution
using the Yates continuity correction. Extension of (2.6) to a
I × J × K table was discussed by Landis, Heyman, and Koch
(1978) and Somes (1986).

Although LR tests defined in Section 3.2, as well as score
tests for H1 using either conditional or unconditional ML es-
timates of the COR, have been widely studied, the notion of
testing H2 has received little attention. The relationships among
testing the three hypotheses, H0, H1, and H2 have not been dis-
cussed in the literature, with the exception of Goodman (1969).
We report a systematic study of the LR tests after defining some
terminology necessary to introduce likelihood information. In
the literature, hypotheses H0 and H2 are usually termed con-
ditional independence and partial association, respectively, but
the two hypotheses are often mixed in use. To avoid ambiguity
in this study, the hypothesis H0 tested for conditional indepen-
dence (across strata), H1 tested for homogeneity (of odds ratios)
or interaction (across strata), and H2 tested for uniform associ-
ation (within strata).

3. LIKELIHOOD RATIO TESTS FOR
THREE–WAY TABLES

One main objective of this study is to clarify that the sam-
ple version of the Pythagorean law (3.4) yields simple LR tests
for H0, H1, and H2 and provides a unified inference framework
compared with the BD and the CMH tests described in Sec-
tion 2. Proposition 1 and Theorem 1 extend (3.4) to testing gen-
eral hypotheses of conditional independence and nonunity in-
teractions, respectively. The goal of comparing the inference of
the derived statistics is illustrated using the notion of two-step
test in Section 4.

3.1 An Information Identity

Let (X,Y,Z) be the variables of a three-way I × J × K con-
tingency table. Let f (i, j, k) = P(X = i,Y = j,Z = k), f (i), g(j),
h(k); i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K, denote the joint
and marginal probability density functions (pdf’s). The well-
known Shannon entropy defines a basic information identity

H(X) + H(Y) + H(Z) = I(X,Y,Z) + H(X,Y,Z), (3.1)

where H(X,Y,Z) = −∑
(i,j,k) f (i, j, k) · log f (i, j, k) is the joint

entropy, and marginal entropies such as H(X) are defined
likewise. The term I(X,Y,Z) = ∑

(i,j,k) f (i, j, k) · log{f (i, j, k)/
f (i)g(j)h(k)} denotes the mutual information between the three
variables (see Gray 1990; Cover and Thomas 1991). One main
contribution of this study is the formulation of a framework for
testing associations based on the mutual information I(X,Y,Z)

of (3.1). The mutual information characterizes the minimum di-
vergence from the joint pdf to a hyperplane of products of the
marginal pdf, that is, the projection from the data to the pa-
rameter space of the independence hypothesis of the variables
[Cheng et al. 2007, (2.9)]. Furthermore, I(X,Y,Z) admits three
equivalent expressions in terms of the obvious likelihood de-
composition, for example,

log

{
f (i, j, k)

f (i)g(j)h(k)

}
= log

{
f (i, k)

f (i)h(k)

}
+ log

{
f (i, j, k)

f (i, k)g(j)

}

= log

{
f (i, k)

f (i)h(k)

}
+ log

{
f (j, k)

g(j)h(k)

}

+ log

{
f (i, j, k)/h(k)

f (i|k)f (j|k)
}
, (3.2)

where convenient notations f (i, j) and f (i|j) are used to denote
the joint pdf and conditional pdf, respectively. By taking ex-
pectations of the sampling versions of both sides of (3.2), an
orthogonal decomposition of the mutual information using Z as
the (common) conditioning variable (CV) is expressed as

I(X,Y,Z) = I(X,Z) + I(Y,Z) + I(X,Y|Z). (3.3)

Three information-equivalent forms of (3.2) and (3.3) are ob-
tained using each of the three variables as the CV. The condi-
tional mutual information I(X,Y|Z) on the right side of (3.3)
measures the association between X and Y at each level of Z,
against which the hypothesis H0 is defined and tested. A further
decomposition leads to a key identity used in this study [Cheng
et al. 2007, (2.12)],

I(X,Y|Z) = Int(X,Y,Z) + I(X,Y ‖ Z). (3.4)

The first summand, Int(X,Y,Z), on the right side of (3.4) de-
fines the three-way interaction between X and Y across Z, which
is unique because of the symmetry in the three variables. Its
sample version can be computed by the iterative proportional
fitting (IPF) scheme of Deming and Stephan (1940) (see, e.g.,
Agresti 2002, p. 343). The second summand, I(X,Y ‖ Z), ob-
tained from subtracting Int(X,Y,Z) from I(X,Y|Z), quantifies
the uniform association between X and Y , given Z. Its sample
version is an analog of the CMH/MH test statistic (2.6). Equa-
tions (3.3) and (3.4) are also valid with sample frequencies, and
the sample analogs on the right side of (3.3) and (3.4) are sta-
tistically independent. The sample versions of the three terms
of (3.4) approximate chi-squared distributions with (I − 1)(J −
1)K, (I − 1)(J − 1)(K − 1), and (I − 1)(J − 1) df, respectively
(Cheng et al. 2007). These are discussed in the next section.
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3.2 LR Tests for 2 × 2 × K Tables

Recall U = {Uk, k = 1, . . . ,K}, the observed data from K
strata of 2 × 2 tables in the variables (X,Y,Z), as defined
before (2.1). Denote the conditional ML estimate under H0
by Wk = (n∗

11k,n∗
12k;n∗

21k,n∗
22k), k = 1, . . . ,K, where n∗

ijk =
ni·kn·jk/n··k are the conditional ML estimates of the cell pro-
portions given the margins, which are the sufficient statis-
tics, of each 2 × 2 table. The LR test for independence of
(X,Y) in a 2 × 2 table, say {nij, i, j = 1,2}, can be expressed
by a sample Kullback–Leibler (KL) divergence (Kullback and
Leibler 1951). That is, maximizing the multinomial LR statistic
�i,j[{f (i, j)nij ; f (i, j) ∈ H0}/{p(i, j)nij ; p(i, j) = nij/n}] for test-
ing p(i, j) ∈ H0 is equivalent to minimizing a scaled KL diver-
gence D(f = p : f = f ∗ ∈ H0) = ∑2

i,j=1nij log(n × nij/ni· × n·j)
(see, e.g., Cheng et al. 2008, lemma 1). To extend testing H0 of
a 2 × 2 table to that of K independent 2 × 2 tables, the anal-
ogous LR test can be expressed as a sum of K KL divergence
statistics. This is the sample analog of I(X,Y|Z), often termed
a deviance statistic when discussing generalized linear models
(McCullagh and Nelder 1989). This LR test can be denoted by

D0 = 2D(U : W) = 2
K∑

k=1

2∑
i=1

2∑
j=1

nijk log(nijk/n∗
ijk)

∼= χ2
K(H0). (3.5)

Thus D0 defines the LR test statistic, giving the omnibus test
under H0. The last term of (3.5) explains its approximate dis-
tribution, χ2

K , under H0, comparable to the Pearson chi-squared
test, χ2

PE , of (2.2). The first term on the right side of (3.4) char-
acterizes the conditional ML estimate under H1 by V = {Vk =
(n̂11k, n̂12k; n̂21k, n̂22k), k = 1, . . . ,K}, which can be computed
by the IPF scheme. The IPF finds V, the combined 2 × 2 ta-
bles given the conditional ML estimate of the COR, denoted
by ψ̂ (e.g., Bishop, Fienberg, and Holland 1975). It was noted
after (3.4) that D0 equals the sum of two independent compo-
nents. The first summand of (3.4) defines the LR test for H1
through the sample KL-divergence statistic

D1 = 2D(U : V) = 2
K∑

k=1

∑
j

∑
i

nijk log(nijk/n̂ijk)

∼= χ2
K−1(H1). (3.6)

As the sample version of Int(X, Y, Z), D1 approximates a χ2
K−1

in distribution under H1, directly comparable to the BD test
of (2.5). The second component of (3.4) defines the sample ana-
log of I(X,Y ‖ Z) to be

D2 = 2D(V : W) = 2
K∑

k=1

∑
j

∑
i

n̂ijk log(n̂ijk/n∗
ijk)

∼= χ2
1 (H0|H1), (3.7)

which is comparable to the CMH test (2.6) and approximates a
χ2

1 under H2. By (3.7), D2 tests for H2 = (H0|H1) conditional
on H1 not being rejected; otherwise it is not necessary, be-
cause logically the rejection of H1 implies the rejection of H2.
As mentioned in Section 1, this fact has essentially been over-
looked when using the CMH test. By (3.4), the independent

LR tests D1 and D2 are favorable competitors to the BD and
the CMH tests, respectively. In short, the three LR test statis-
tics (3.5), (3.6), and (3.7) satisfy the approximate equation in
distribution χ2

K(H0) ∼= χ2
K−1(H1) + χ2

1 (H2).

Proposition 1. Let the data be the 2 × 2 × K table, U =
{(n11k,n12k;n21k,n22k), k = 1, . . . ,K}. Let W be the ML esti-
mate (n∗

11k,n∗
12k;n∗

21k,n∗
22k), k = 1, . . . ,K, under H0, and let V

be the ML estimate (n̂11k, n̂12k; n̂21k, n̂22k), k = 1, . . . ,K, un-
der H1. It then follows by (3.4) that the LR test statistics satisfy
the same identity,

D0 = D1 + D2. (3.8)

3.3 Power Analysis of the LR Tests

As mentioned in Section 1, power evaluation at a class H′ of
patterns of unequal odds ratios across strata, against the null hy-
pothesis H0 or H1, can be developed. This power analysis can
be used to estimate the sample size needed to meet a criterion of
specificity and sensitivity for testing H′. For a strata of K 2 × 2
tables, there are K − 1 ratios between consecutive pairs of the
odds ratios or the consecutive three-way interactions. Without
loss of generality, using the case where K = 2 suffices to clar-
ify the theory. Additional notation is needed. Let the observed
2 × 2 × 2 table be U = (U1;U2), where U1 = (a,b; c,d) and
U2 = (e, f ;g,h). As an extension of Proposition 1, let W ′ =
(W1;W2) be a member of H′, which is a class of alternatives to
H′

1. Here it is convenient to assume that W1 = (a∗,b∗; c∗,d∗)
and W2 = (e∗, f ∗;g∗,h∗) have the same total counts as U1
and U2, respectively and unequal sample odds ratios, ψ1 =
a∗d∗/b∗c∗ and ψ2 = e∗h∗/f ∗g∗, such that 1 �= γ = ψ1/ψ2 > 0.
Given W ′ ∈ H′, there exists a unique member V ′ in H′

1 such that

V ′ = (V1 = (â, b̂; ĉ, d̂);V2 = (ê, f̂ ; ĝ, ĥ)) would have the same
margins as those of U = (U1;U2), and the same ratio γ as the
interaction between V1 and V2 (Vi need not have ψi as its odds
ratio). An analog of (3.8) holds. This is summarized in Theo-
rem 1, which is proved in Appendix A, which also includes the
proof of (3.8) as a special case.

Theorem 1. Let U be a 2 × 2 × K table. Let W ′ ∈ H′ be an-
other 2×2×K table having the same table totals as those of U,
sample odds ratios (ψ1, . . . ,ψK), and consecutive three-way
sample interactions 1 �= γi = ψi/ψi+1 > 0, i = 1, . . . ,K − 1.
Then there is a unique 2 × 2 × K table V ′, V ′ ∈ H′

1, having the
same table margins as those of U, such that an extension of (3.8)
holds,

D(U : W ′) = D(U : V ′) + D(V ′ : W ′). (3.9)

Equation (3.9) is a generalization of the invariant
Pythagorean law of relative entropy in testing two-way inde-
pendence (e.g., Cheng et al. 2008, lemma 2). It is seen that
eq. (3.9) generalizes (3.8) from testing H0 and H1 with interac-
tion parameter γi = 1 to testing H′ and H′

1 with γi �= 1. The
same asymptotic chi-squared distributions for (3.8) are also
valid for (3.9) and yield the same calculated p-values for H0
and H1 as for H′ and H′

1. Figure 1 presents the geometry il-
lustrating the similarity between eq. (3.8) (lower hyperplane
with γ = 1) and eq. (3.9) (upper hyperplanes with γ �= 1), as-
sociated with hypotheses H1 and H′

1, respectively. For the case
where K = 2 with a pair of 2 × 2 tables, D1 of (3.8) tests for the
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Figure 1. Null hypotheses: D(U : W) = 0 = D(U : V) + D(V : W),

γi = 1; alternative hypotheses: D(U : W ′) = 0 = D(U : V ′) + D(V ′ :
W ′), γi �= 1.

hypothesis H1 of no interaction, that is, γ = 1. It also leads to
an interval estimation for the interaction parameter γ through
using D(U : V ′) of (3.9).

In Section 4 we show that eq. (3.8) leads to the development
of a two-step test for conditional independence across strata.
Moreover, eq. (3.9) is key to developing a two-step test for un-
equal interaction parameters or for unequal odds ratios. An ap-
plication of the power evaluation of (3.9) to a simple case, a
pair of unequal odds ratios, is given in Example 4 of Section 5.
Indeed, Theorem 1 can yield a particular inference framework;
D(U : V ′) is useful for testing a general hypothesis of consec-
utive interaction parameters γi �= 1 between several 2 × 2 ta-
bles, for example, to test a trend of odds ratios. Overall, the
inference derived from Theorem 1 directly provides a complete
framework for testing hypotheses, of which the basic frame is
similar to the logit modeling for testing conditional indepen-
dence with a nonzero interaction parameter (e.g., Swaminathan
and Rogers 1990; Agresti 2002, secs. 5.4 and 6.3). In the case of
sparse tables with small sample sizes, LR tests might not yield
desirable inference, particularly with a large number of sparse
tables. In these cases, exact conditional inference is usually rec-
ommended (cf. Mehta and Patel 1983; Agresti 2002, sec. 6.7),
for which our proposed two-step test procedure can be analo-
gously defined. These facts can be summarized in the following
corollary. For economy of exposition, a straightforward proof
is omitted.

Corollary 1. For K = 2, the statistic D(U : V ′) tests for a spe-
cific value of the interaction parameter γ (�= 1) and provides an
interval estimation for the parameter γ of the observed data U.

3.4 Relation to Log-Linear Models

At this point, it is of interest to note that the likelihood ra-
tio tests for 2 × 2 × K tables as expressed by the foregoing
information identities can be equivalently obtained by consid-
ering tests within a log-linear model setting. If the data are con-
sidered using a log-linear model, then D1 can be expressed as
an LR test statistic for the three-factor interaction term in the
log-linear model. In addition, D0 can be expressed as the LR
test statistic for testing no association between X and Y and no
three-way interaction. This also provides an easy way to obtain
D2, by finding D0 and D1 from the log-linear model and then

subtracting. However, the relationship between the test statistics
and any particular individual term in the log-linear model is not
straightforward in general. For example, in Example 1 of Sec-
tion 4.3, D2 can be derived by subtraction, although this does
not follow naturally from considering the terms in the hierarchi-
cal log-linear model, because D0 is computed while ignoring
the test significance for the interaction. We discuss the role of
two-step tests in more detail in the next section. Even if the log-
linear model were not required to be hierarchical and thus an
interaction term was still included when testing the association
between X and Y , this would not determine D2. This is because
the terms in the log-linear model are not generally orthogonal,
whereas the information tests are orthogonal by construction.
Thus, for higher-way tables, the terms cannot be straightfor-
wardly matched on a term-by-term basis between the informa-
tion and log-linear approaches, but possibly could be obtained
by considering linear combinations of log-linear model LR test
statistics that span orthogonal subspaces. In turn, this also could
provide a way to examine the size and power relationships of
tests when carrying out sequential tests of parameters in log-
linear models, as the two-step tests for examining H1 and H2
discussed next.

4. TWO–STEP TESTS FOR H1 AND H2

4.1 Interval Estimation of the Common Odds Ratio

Confidence interval (CI) estimation of the COR, ψ , was first
studied by Woolf (1955), Mantel and Haenszel (1959), and Gart
(1962). Thereafter, the asymptotic variance of the MH esti-
mate received most discussion (e.g., Thomas 1975; McKinlay
1978; Breslow and Liang 1982; Tarone, Gart, and Hauck 1983;
Robins, Breslow, and Greenland 1986). On the other hand, the
conditional ML estimate, ψ̂ (fixing both margins of each 2 × 2
table), of the COR differs slightly in magnitude from either the
MH estimate (2.4) or the conditional ML estimate using ex-
tended hypergeometric distributions (Gart 1970), as well as the
unconditional ML estimate (fixing one margin of each 2 × 2
table). It has been noted that ψ̂ might be preferred to the un-
conditional ML estimate in terms of both bias and efficiency
(Hauck 1984). In contrast to those studies, here we propose CI
estimation of ψ using the information identity (3.8).

The right side of eq. (3.8) can be used to define a two-step
test for H0, in contrast to the left-side test D0. It first tests H1
using D1, and if H1 is rejected, then so logically is H2, and
the test is concluded, noting that there is evidence of significant
interaction; otherwise, testing H2 proceeds, using D2 as the sec-
ond step. A byproduct of the two LR tests is a simple interval
estimation procedure for the COR ψ . If H1 is rejected, then the
KL divergence statistic D1 from the data to the line of COR
(Figure 1, lower hyperplane) is significantly large. This implies
that defining a COR is not statistically justified, even though a
CI for ψ can be estimated using the foregoing equations. This
would however not be valid as rejection of H1 implies there is
no COR. If H1 is not rejected, then a standard CI of the COR ψ

can be estimated by inverting the approximating χ2
1 distribution

of D2. To illustrate this, Proposition 1 asserts that the first-step
test D1 computes the ML estimate V , which is the 2 × 2 × K
table with the COR ψ̂, a base value within a CI for ψ. Next, ap-
plying D2 yields the two-sided CI (Wl, Wu) of 2 × 2 × K tables
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centered at V using the approximate distribution χ2
1 ; comput-

ing the CORs of the pair (Wl, Wu) yields (ψl, ψu), which is the
desired two-sided CI that includes ψ̂ . By standard LR test the-
ory, this approach yields asymptotically efficient CI estimation
for ψ , without formulating the asymptotic variance for ψ̂ . An
example of the proposed CI is given in Example 4 of Section 5.

In theory, the CMH test is formulated as a score test without
using ψMH ; thus a CI of the COR cannot be found by inverting
a chi-squared distribution. A popular CI is derived from a log-
arithmic transformation of ψMH with an asymptotic variance
estimate (e.g., Robins, Breslow, and Greenland 1986), which
is known to be asymptotically efficient under H0, and the re-
sulting CI is usually comparable to that given by the two-step
LR test. However, the difference between these two interval es-
timation procedures focuses on the logical implications of the
two-step procedure. The proposed two-step LR test uses D2 to
estimate a CI only when D1 is insignificant under the same joint
likelihood testing framework using the statistical independence
between the two tests. In the literature, a CI of the COR using
ψMH has not been preceded by a test of H1, because no inde-
pendent test is available to precede with the CMH test.

4.2 A Naive Two-Step Test

Figure 1 illustrates that the hypotenuse defines the omnibus
test D0 for H0, and that the two sides of the right triangle form
a basic pair of LR tests. First, D1 is used for testing H1, then D2
is used to test H2 only if H1 is not rejected. The two-step test
arises from the identity (3.8), which is true for the LR tests
but not for other tests, such as BD and CMH. This two-step
procedure also holds for logit models, as mentioned in Sec-
tion 3.3, because there are popular logit-normal random-effects
models for testing and estimating H0, H1, and H2 (e.g., Skene
and Wakefield 1990; Liu and Pierce 1993; Agresti and Hartzel
2000). For the LR tests, because H0 ⊂ H1, and H2 = (H0|H1),
both D1 and D2 are considered effective for testing H0. But care
must be taken when choosing the size of the tests. If the same
test level α is used for both D1 and D2 as usual, then the ef-
fective test size for H0 would be about 2α, twice that of D0.
To illustrate this further, the initial discussion of a two-step test
that follows takes the same nominal level α for each of the three
LR tests.

For fixed K and a usual nominal level range, say 0 < α ≤
0.10, let

C = CK = {D0 > qK,α} (4.1)

be a level-α critical region under H0, where qK,α denotes the
100(1 − α) percentile of the χ2

K distribution. Similar critical
regions are defined as the events A = AK−1 = {D1 > qK−1,α}
and B = {D2 > q1,α}, based on the quantiles of χ2

K−1 and χ2
1

distributions, respectively. Then, for fixed K, the critical region
of the naive two-step test is defined to be

E = EK = A ∪ (Ac ∩ B), (4.2)

where the superscript c denotes the complement of an event.
Under H1 and H2, event E is governed by the likelihood,
PH1(A) = α, of rejecting H1 (hence H2) by D1, such that
PH1(A

c) = 1−α is the likelihood of using D2 when H1 is not re-
jected. The size of this two-step test (for H0) is α + (1 − α)α =
2α − α2, slightly less than 2α. For K ≥ 2 and 0 < α ≤ 0.10,

the following inequality holds from the properties of the chi-
squared distribution:

qK,α < qK−1,α + q1,α. (4.3)

Thus, by (4.1) and (4.2), define, for fixed K, F = FK = C ∩Ac ∩
Bc as the subset of C not contained in E. In contrast, let the
disjoint union G = (A ∩ Cc) ∪ (Ac ∩ B ∩ Cc) denote the subset
of E not included in C. It can be shown that the naive two-step
test (for H0) is more sensitive than the omnibus test D0; that is,
it follows from (4.3) that

P(F) ≤ P(qK,α < D0 ≤ qK−1,α + q1,α)

≤ P(qK,α < D0) − P(qK−1,α ≤ D1 and q1,α ≤ D2)

= α − α2. (4.4)

In contrast,

P(G) = P{(A ∩ Cc) ∪ (Ac ∩ B ∩ Cc)}
= P(Cc) − P(Cc ∩ Ac ∩ Bc)

≥ P(Cc) − P(Ac)P(Bc)

= α − α2. (4.5)

Thus (4.4) and (4.5) conclude that

P(F) ≤ P(G). (4.6)

As noted in Section 4.1, the COR interval estimate arises from
the event Ac ∩ B of (4.2), given that testing for H1 by D1 is
insignificant at level α. But the test levels of D1 and D2 need
not be equal to α, as we discuss in the next section.

4.3 The Two-Step Test

As illustrated earlier, a natural competitor to the omnibus
test D0 is a two-step test that combines the first test D1 for H1
and the second test D2 for H2, because of the fact that rejec-
tion of H1 implies rejection of H0, and also of H2. Suppose
that two distinct test levels, α1 and α2, are separately used
for D1 and D2; then the critical regions A = {D1 > qK−1,α1} and
B = {D2 > q1,α2} can be defined by analogy with (4.2) against
the same critical region (4.1) of the test D0. To maintain the
same test level α as in (4.1), the equation

P(E) = PH1(A) + {
1 − PH1(A)

}
PH2(B)

= α1 + (1 − α1)α2 = α (4.7)

must be satisfied, where PH0|H1(A
c ∩ B) = PH2(B), because D1

and D2 are independent. Equation (4.7) admits numerous solu-
tions having α1 + α2  α within the range 0 < α ≤ 0.10, when
the product α1α2 is rather small. To choose the levels α1 and α2,
given (3.8), the following can be used for a given level α:

argmin
α1,α2

{
qK−1,α1 + q1,α2 |α1 + (1 − α1)α2 = α

}
. (4.8)

Thus, when K = 2, a common level α1 = α′ = α2 is recom-
mended, for which the solution is α′ = 1 − √

1 − α, which
is slightly greater than α/2 for 0 < α ≤ 0.10; for example,
α′ = 0.0253 when α = 0.050. For K ≥ 3, the choices of the
pair (α1, α2) will depend on the upper percentiles of the chi-
squared distributions. Because αi < α, it seems unlikely that a
two-step test for H0 will be as sensitive as the omnibus test. In-
deed, the converse of inequality (4.6) holds, stated as (4.9) in
the next proposition, which is proved in Appendix B.
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Proposition 2. Define the same events C, E, F, and G as
in (4.1)–(4.5), except that the test levels of D1 and D2 are now
replaced by α1 and α2 according to (4.7). Then the converse of
(4.6) holds for the two-step test, that is,

P(F) ≥ P(G). (4.9)

The critical regions A, B, and C of the three LR tests, as de-
fined by (4.1) and (4.2), present eight possible combinations of
significant and insignificant tests. This corresponds to dividing
the sample space into distinct subsets, among which the event
A ∩ B ∩ Cc is impossible (i.e., is the empty set), in view of
inequality (4.3). This fact and (4.3) continue to be true when
the levels α1 and α2 (smaller than α) are used in a two-step
test. To illustrate the seven possibly nonempty events, it can be
checked that the data given by Cheng et al. [2006, table 1, (3.2)
and (3.3)] give a case of the event A ∩ B ∩ C that has all three
tests significant. It also is easy to identify a case with all three
tests insignificantly small in magnitude; that is, Ac ∩ Bc ∩ Cc

occurs when the cell counts in the tables are in essence homo-
geneous. Examples 1–5 present empirical data that character-
izes the remaining five cases and illustrates the performance of
the two-step LR tests compared with the BD and CMH tests in
these settings, as well as the performance of the adjusted and
unadjusted test sizes.

In the examples that follow, α = 0.05, and the values of α1
and α2 are specified.

Example 1. Consider a 2×2×3 table (Table 1) that has odds
ratios ψ1 = 0.47, ψ2 = 0.36, and ψ3 = 2.52, which vary around
unity.

Computing the usual test statistics of Section 2, χ2
PE = 7.00,

p = 0.07 and χ2
CMH = 0.642, p = 0.42, indicating that H0 is not

rejected. But ψMH = 0.77 and χ2
BD = 6.41, p = 0.04, which

suggests rejecting H1, and hence H0, because H0 ⊂ H1. In
contrast, the LR tests yield D0 = 7.04, p = 0.07; D1 = 6.39,
p = 0.04; and D2 = 0.66, p = 0.42. Like χ2

PE , the LR test D0
for H0 is insignificant, and it seems that the event A ∩ Bc ∩ Cc

occurs for LR tests as well as for the classical tests. Although
the test D1 for H1 is significant, it is not at a lower level (using
α1 = 0.027 and α2 = 0.024 as K = 3) using the two-step test.
The results of the two-step LR tests are consistent, whereas the
BD and CMH tests are inconsistent, because the significant re-
sult for the BD test implies rejection of all three hypotheses.

Example 2. Consider a 2 × 2 × 3 table (Table 2) that has
similar odds ratios: ψ1 = 3.25, ψ2 = 3.33, and ψ3 = 2.96.

The Pearson test yields χ2
PE = 5.84, p = 0.14; ψMH = 3.15,

χ2
BD = 0.013, p = 0.99; and χ2

CMH = 5.74, p = 0.017. The MH

test (using continuity correction) yields χ2
MH = 4.33, with p =

0.037. For the LR tests, the omnibus test is insignificant as D0 =
4.73, p = 0.19; moreover, D1 = 0.013, p = 0.99 and D2 = 4.72,
p = 0.03, and thus the event Ac ∩ B ∩ Cc occurs. The CMH test

Table 1. Example 2 × 2 × 3 data table with
odds ratios varying around unity

9 19 6 15 22 8
18 18 10 9 12 11

Table 2. Example 2 × 2 × 3 data table with
very similar odds ratios (ψ1 = 3.25,

ψ2 = 3.33, and ψ3 = 2.96)

1 3 80 9 3 9
4 39 8 3 8 71

is significant, but the LR test yields an insignificant two-step
test at level α2 = 0.024, despite that D2 is significant at level α.
The MH test for H2 was significant, but it could be comparable
to the second-step test D2, if the same adjusted level 0.024 were
used. In this case, the MH test may be preferred to the CMH
test, because there are a few cell counts below 5.

Examples 1 and 2 illustrate that the excessive sensitivity of
the two independent LR tests may be relieved using the adjusted
test sizes of a two-step test. However, given the nonindepen-
dence of the BD and CMH tests, it is difficult to formulate an
appropriate adjustment for the test sizes of the combined BD
and CMH tests.

Example 3. Consider a 2 × 2 × 2 table (Table 3) with odds
ratios ψ1 = 30 and ψ2 = 1.125.

For these data, D0 = 6.81, p = 0.033; D1 = 3.14, p = 0.076;
and D2 = 3.67, p = 0.056. This is a special case where the
omnibus (hypotenuse) LR test is significant, yet the two in-
dependent components are insignificant, and thus the event
Ac ∩ Bc ∩ C occurs. In accordance with Proposition 2, a two-
step test can be less sensitive than the omnibus test.

5. EMPIRICAL STUDY

Examples 1–3 present a subset of the comparison conditions
between the omnibus test D0 and the two-step test, D1 followed
by D2, along with the corresponding BD and CMH tests. To
complement the illustration of the remaining conditions, in this
section we present two real data examples from the literature.
In addition, a basic use of the power analysis of Theorem 1
is explained in Example 4. In the next two examples, analyses
of the previous authors are reported and compared with those
obtained from the LR tests. The level α = 0.05 is used unless
stated otherwise.

Example 4 refers to data extracted from part of an empirical
study that examined the association between allele frequency
of a type (or genotype), and a case-control diabetes type across
population subdivision strata (Ardlie, Lunetta, and Seielstad
2002, table 2).

Example 4. Data of two 2×2 tables are genotypes and allele
frequencies for certain polymorphisms in the Polish and U.S.
samples. Odds ratios between the frequencies of allele type and
of case-control, and p-values of association tests, including the
MH test, were studied. The data from their table 2 are briefly
illustrated in Table 4. The data are a pair of 2×2 tables denoted

Table 3. Example 2 × 2 × 2 data table with
very different odds ratios (ψ1 = 30 and

ψ2 = 1.125)

5 1 3 4
1 6 2 3
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Table 4. Genotypes and allele frequencies for the PPARg Pro12Ala
polymorphism in the Polish and U.S. DM2 samples (from Ardlie,

Lunetta, and Seielstad 2002, table 2)

Poland U.S.

Allele freq.\Genotype C G C G

Case 62 419 48 447
Control 92 371 51 445

by U = (U1,U2). The row factors were case and control, and
the column factors were C and G allele types. U1 is the table
for Poland, with sample size n1 = 944, and U2 is the table for
U.S. with n2 = 991.

The authors computed the sample odds ratios, 0.597 and
0.937, for the two tables, respectively, and the COR estimate
ψMH = 0.719, with a 95% CI (0.60,0.87) that excludes 0.937
and barely includes the other sample odds ratio, 0.597. The
CMH test yields χ2

CMH = 5.88 with p = 0.015 (or χ2
MH = 5.56

with p = 0.018), which led to a significant conclusion that “the
two odds ratios are different.”

The omnibus test is D0 = 8.55 with p = 0.014, and K = 2 df.
Then D1 = 2.646 with p = 0.104, and the conditional ML es-
timate is ψ̂ = 0.718; further, ψMH = 0.719 and χ2

BD = 2.653,
p = 0.103. Thus, both tests for interaction are insignificant,
justifying a common odds ratio for Poland and the U.S. be-
cause their distribution patterns are alike. Because the omnibus
test D0 is significant, and the test for H1 is insignificant, H2
is tested. Now the second-step test yields D2 = 5.905 with
p = 0.015, which is significant at level α2 ≈ α/2 = 0.025. This
yields a significant two-step test at level 0.05, a similar result
to the significant CMH test together with the insignificant BD
test, and the event Ac ∩ B ∩ C occurs. The conclusion follows
that there is evidence that the odds ratios differ from 1, but no
evidence that they differ from each other.

It follows from an insignificant first-step test for H1 that a
95% CI, (0.549,0.938), of the COR ψ is legitimately com-
puted by inverting the sampling distribution χ2

1 of the statis-
tic D2, based on and centered at ψ̂ . The result is closely compa-
rable to the popular CI (0.551,0.941) obtained from estimating
the standard error of a transformed MH estimate, as illustrated
at the end of Section 4.1, although the first CI does not require
the asymptotic variance estimate that is needed for the second
CI.

Suppose that there was doubt regarding possible undercounts
or missing cases behind the observed data U. In accordance
with Theorem 1, it may be assumed that an alternate table could
have been observed, say W ′ = (W ′

1, W ′
2) (see Table 4′). The

odds ratio of the alternative table W ′
1 for Poland is ψ1 = 0.693,

Table 4′. Possible alternative table of genotypes and allele
frequencies

Poland U.S.

Allele freq.\Genotype C G C G

Case 80 420 51 445
Control 110 400 51 445

and that of W ′
2 for the U.S. is ψ2 = 1.00, such that the inter-

action parameter is γ ′ = ψ1/ψ2 = 0.693. The question is, if
the table of unequal odds ratios W ′ ∈ H′ were a valid hypoth-
esis, would it be supported by the observed data U? It is seen
that 2D(U : W ′) = 5.450, with p = 0.066 against the χ2

2 distri-
bution, where W ′ is normalized to have the same total as the
data U. Thus the pair of odds ratios of W ′ are not far from
those of U, and the omnibus test is insignificant. Meanwhile,
by eq. (3.9) there exists a table V ′ ∈ H′

1 with the same margins
of data U and the same interaction 0.693 of W ′. It follows that
the first-step test, 2D(U : V ′) = 0.092, is insignificantly small,
but the second-step test, 2D(V ′ : W ′) = 5.358, with p = 0.020,
is significant at level 0.025. Thus the event Ac ∩ B ∩ Cc oc-
curs, with the interpretation that testing W ′ with (γ ′ = 0.693),
which is closer to the sample ratio γ = 0.597/0.937 = 0.637 of
the data U than any member of H1 (γ = 1), can be seemingly
insignificant by the omnibus test, but not by the two-step LR
test. Theorem 1 illustrates that testing a hypothetical table of
unequal odds ratios (H′), and testing its ratio of odds ratios, the
interaction parameter (H′

1), are two different LR tests, but they
can be connected through a two-step LR test.

The next example refers to data from a study of the effect
of progestogens versus placebo on miscarriage, stillbirth, or
neonatal death, which cites a previous study on “hormone ad-
ministration for maintenance of pregnancy” by Reis, Hirji, and
Afifi (1999, table III).

Example 5. Pregnancy data from a meta-analysis of clinical
trials (Reis, Hirji, and Afifi 1999) with seven 2 × 2 tables (their
table III) of two dichotomous factors: the case-control and the
treatment conditions, progestogens and placebo.

For the data in their table III, Reis, Hirji, and Afifi (1999)
computed several exact and asymptotic tests for H1. The BD
test yielded χ2

BD = 11.26, with p = 0.081 and K − 1 = 6 df. All
other tests yielded similar results, with p-values in the range
[0.055,0.09], except that p = 0.032 was given by the uncondi-
tional LR test, the only test that did not support H1. It was sus-
pected that “the unconditional LR test was too liberal in terms
of size.”

The omnibus test for H0 yields D0 = 14.13, p = 0.049, with
7 df, which is marginally significant. The LR test for H1 yields
D1 = 13.77, p = 0.032, with 6 df, which agrees with the om-
nibus test and the unconditional LR test, but not with the BD
test, at the same level, α = 0.05. As mentioned in Section 1,
this presents a case where the BD test may be more conserva-
tive than the LR test D1, as noted by Hauck (1984) and Paul
and Donner (1992). Meanwhile, χ2

CMH = 0.353, p = 0.553,
which is comparable to the insignificant LR test D2 = 0.358,
p = 0.550. Thus the event A ∩ Bc ∩ C occurs with the LR tests
with all tests at the level α.

Continuing with the tests but at an adjusted level, it is found
that, using the scheme recommended in Section 4.3, the levels
(α1, α2)  (0.030, 0.020) should be used. In this case, neither
H1 nor H2 is rejected (although H1 is fairly marginal). The COR
estimate ψMH = 0.853, or ψ̂ = 0.850, is marginally meaning-
ful, although H2 implies that there is no evidence that ψ �= 1.
Thus this example demonstrates that when tests of level α are
used, the event A ∩ Bc ∩ C occurs, whereas the adjusted tests
yield the event Ac ∩ Bc ∩ C, showing the decrease in sensitivity
of the adjusted two-step test in accordance with Proposition 2.
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Overall, the examples demonstrate that the use of LR tests
developed through the information decomposition allows a de-
scription of the power and sensitivity of the omnibus and two-
step tests due to the LR tests’ independent nature, something
that is not possible when using other tests.

6. CONCLUDING REMARKS

The two major achievements of this study—developing a
power analysis for tables with unequal odds ratios or varied in-
teractions, and decomposing the LR test for conditional inde-
pendence as a two-step test—are based on a log-likelihood de-
composition for three-way contingency tables. The key to these
findings is the geometry of an invariant Pythagorean law of rela-
tive entropy, which is derived from the mutual information iden-
tities (3.3) and (3.4) for three-way tables. Extensions of mu-
tual information identities to multiway tables are equivalently
straightforward. It follows that testing interaction and testing
uniform association are the two independent components of the
omnibus test for conditional independence. Application to the
special case of 2 × 2 × K tables establishes both Proposition 1
and Theorem 1, which leads to the development of the two-step
tests. This allows for a comparison study with the widely used
BD and CMH tests as presented in Section 4.

In practice, the omnibus LR test for conditional indepen-
dence is first examined, followed by checking the first-step LR
test for interaction and the second-step test for uniform asso-
ciation. The three LR tests of Figure 1 are examined together,
where consistent or inconsistent significant results between the
omnibus test and the two-step test can occur randomly, as indi-
cated by Proposition 2. In contrast, the BD and the CMH tests
are computed separately, and their individual results can dif-
fer from those of the two-step tests. In addition, because of the
nonindependence of the BD and CMH tests, it is difficult to for-
mulate a joint testing framework based on these two tests. On
the other hand, each of the two-step LR tests is independent
and thus can be combined easily. In addition, the two-step test
corresponds to testing parameters in a logit model, as noted in
Section 4.2. But when using the adjusted test levels, the two-
step test likely will differ from the popular logit models, with
or without random effects. In conclusion, we remark that mu-
tual information identities are useful for testing the hypotheses
of independence, uniform association, and arbitrary interaction
through the definition of two-step LR tests.

APPENDIX A: PROOF OF THEOREM 1

Before presenting the proof, it is useful to remark on the difference
between this proof and that (for a goodness-of-fit test in a 2 × J table;
J ≥ 3) of lemma 3 of Cheng et al. (2008). The proof can be directly
extended to K (≥ 3) 2 × 2 tables with different consecutive ratios of
odds ratios say, γ1 �= γ2 �= · · ·, whereas the similar proof for the two-
way table of lemma 3 requires that γ1 = γ2 = · · · = ψ to satisfy the
goodness of fit between two rows or uniform association.

For a strata of K 2 × 2 tables, it takes K − 1 estimates of the in-
teractions between the K − 1 consecutive pairs of tables. Without loss
of generality, it suffices to confine the proof to the case where K = 2,
and W ′ can be scaled to have the same size of each 2 × 2 table of the
observed data U. Recall that U = (U1;U2), where U1 = (a,b; c,d)

and U2 = (e, f ;g,h) are two 2 × 2 tables, and W = (W1;W2), where
the ratio of the two odds ratios of W1 = (a∗,b∗; c∗,d∗) and W2 =
(e∗, f ∗;g∗,h∗) is γ > 0. The task is to prove (3.9), that there is a

unique V ′ = (V1 = (â, b̂; ĉ, d̂);V2 = (ê, f̂ ; ĝ, ĥ)) with the same mar-
gins as those of U = (U1;U2) and the same ratio γ as the interaction
between V1 and V2. It suffices to prove that

a log(â/a∗) + b log(b̂/b∗) + c log(ĉ/c∗) + d log(d̂/d∗)

= â log(â/a∗) + b̂ log(b̂/b∗) + ĉ log(ĉ/c∗) + d̂ log(d̂/d∗), (A.1)

due to the basic equation a log(a/a∗) = a[log(a/â) + log(â/a∗)]. By
(A.1), it is easy to check that the proof reduces to verifying the equa-
tion

â log

[
(â/a∗)/(b̂/b∗)

(ĉ/c∗)/(d̂/d∗)

]
+ (â + ĉ) log

{
ĉ/c∗
d̂/d∗

}

+ (â + b̂) log(b̂/b∗) + (ĉ + d̂) log(d̂/d∗)

+ ê log

[
(ê/e∗)/(f̂ /f ∗)

(ĝ/g∗)/(ĥ/h∗)

]
+ (ê + ĝ) log

{
ĝ/g∗
ĥ/h∗

}

+ (ê + f̂ ) log(f̂ /f ∗) + (ĝ + ĥ) log(ĥ/h∗)

= a log

[
(â/a∗)/(b̂/b∗)

(ĉ/c∗)/(d̂/d∗)

]
+ (a + c) log

{
ĉ/c∗
d̂/d∗

}

+ (a + b) log(b̂/b∗) + (c + d) log(d̂/d∗)

+ e log

[
(ê/e∗)/(f̂ /f ∗)

(ĝ/g∗)/(ĥ/h∗)

]
+ (e + g) log

{
ĝ/g∗
ĥ/h∗

}

+ (e + f ) log(f̂ /f ∗) + (g + h) log(ĥ/h∗). (A.2)

By assumption, the four large bracketed logarithmic arguments are
equal to the common ratio γ between two odds ratios, and these cor-
responding terms are equal, because (a + e) = (â + ê) as U and V
have equal margins. The terms associated with the four braces are also
equal, because (a + c) = (â + ĉ) and (e + g) = (ê + ĝ). Furthermore,
the remaining terms are equal as well, because U and V ′ have the same
margins. Equation (A.2) is valid, and the proof of Theorem 1 is com-
plete.

APPENDIX B: PROOF OF PROPOSITION 2

By definition, the same notations of (4.1)–(4.5) apply to the
tests D0, D1, and D2, using the test sizes α, α1, and α2, respec-
tively. Because 0 < α1, α2 < α, (4.3) is replaced by the inequality
qK,α < qK−1,α1 + q1,α2 , which is valid as well. The next two equa-
tions are straightforward:

P(F) = P(C ∩ Ac ∩ Bc)

= P(C) − P(C ∩ Ac ∩ B)

− P(C ∩ A ∩ B) − P(C ∩ A ∩ Bc) (B.1)

and

P(G) = P(Cc ∩ A) + P(Cc ∩ Ac ∩ B)

= P(Cc ∩ Ac ∩ B) + P(Cc ∩ A ∩ Bc), (B.2)

because the event Cc ∩ A ∩ B is empty by (4.3). Taking the difference
between (B.1) and (B.2), it is seen from (4.7) that

P(G) − P(F) = P(Ac ∩ B) − P(C) + P(C ∩ A ∩ B) + P(A ∩ Bc)

≤ (1 − α1)α2 − α + α1α2 + α1(1 − α2)

= 0. (B.3)

This proves Proposition 2.

[Received January 2009. Revised February 2010.]
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