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Abstract: Nearest neighbor regression and kernel regression have been discussed to-

ward imputing missing data in survey sampling for decades. In this study, methods

of regression imputation are examined for estimating the mean of an incomplete

variable and for predicting unidentified objects in the data. Novel convex mixtures

of these two regression imputation estimators are constructed for keeping stable

performance when the underlying missing data conditions are non-regular. Using

a simulation study of two typical non-regularity conditions, the mixture imputa-

tion is shown to yield improved estimation against the existing competitors. The

performance of predicting unidentified classes by the convex mixtures imputation

estimators is also examined using two data sets from the UCI Machine Learning

Repository.
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1. Introduction

Incomplete data commonly arise in various forms of item nonresponses in

many studies using large-scale survey questionnaires. They may arise from the

well-known double sampling scheme when rarely observed responses or more ex-

pensive measurements are missing by design. Data can also be missing completely

at random (MCAR) and unrelated to available covariates, when the test sam-

ples are predicted under cross-validation schemes in supervised machine learning,

such as CART (Breiman et al. (1984)) and boosting nearest neighbor classifiers

(Breiman (1996)). In many empirical studies, missing data mechanisms can be

analyzed as functions of relevant covariates termed missing-at-random (MAR;

Rubin (1976)), otherwise, missing data are generated by special causes hence

termed missing-not-at-random (MNAR). Aside from informative MNAR cases

such as censored data or selection-biased samples (Marlin et al. (2007)), it is

easy to make but nontrivial to test the MAR assumption (Qu and Song (2002);

Potthoff et al. (2006)) compared with MCAR (Fuchs (1982); Diggle (1989); Chen

and Little (1999)). Nevertheless, an estimable MAR model is usually assumed
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such that inference can be carried out using available covariates, instead of delet-

ing the incomplete units in the data.

While parametric inference for the mean of an incomplete variable is com-

monly examined using an EM algorithm under the MAR assumption, various

methods of predicting the unidentified units have gained popularity in the ma-

chine learning literature. Instead of assuming parametric models for the regres-

sion function or missing data pattern, nonparametric regression methods have

been discussed since the 1980s (Matloff (1981); Cheng and Wei (1986); Altman

(1992)). Under MAR, asymptotic normality of the kernel regression (KR) im-

putation was initially examined by Cheng and Wei (1986) and Cheng (1990,

1994).

A review of the existing nonparametric estimators is given as motivation

for this study. Suppose that a random sample with incomplete responses are

observed,

(Xi, Yi, δi), i = 1, 2, . . . , n. (1.1)

Here the covariates Xi are observed, and δi = 1 if Yi is observed, δi = 0 otherwise.

The parameter of interest is the mean of Y (µ = EY ), which can be estimated

under the MAR assumption,

P (δ = 1|X,Y ) = P (δ = 1|X) ≡ p(X). (1.2)

Let m(x) = E(Y |X = x) denote the regression function. Two KR imputation

estimators for the mean are

µ̃KR =
1

n

n∑
i=1

m̂KR(Xi), (1.3)

and

µ̂KR =
1

n

n∑
i=1

{δiYi + (1− δi)m̂KR(Xi)}, (1.4)

where

m̂KR(Xi) =

∑n
j=1Wh(Xi, Xj)δjYj∑n
j=1Wh(Xi, Xj)δj

, (1.5)

Wh(u, x) = h−1W ((u − x)/h), W is a symmetric probability (kernel) density

function in the domain of the variable X, and h is the kernel bandwidth. These

estimators approximate the same normal distribution and are termed asymptot-

ically equivalent in distribution (Cheng (1994)). In the literature, the estimator

(1.4) was also discussed with semiparametric regression analysis and empirical

likelihood inference (e.g., Wang et al. (2003)).
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A well-known alternative to the KR estimation is the k-nearest neighbor

(k-NN) regression estimation. It has traditionally been a method used in the

machine learning literature (Cover and Hart (1967); Toussaint (2005)). The

one nearest neighbor (1-NN) imputation was applied to nonresponses in survey

sampling (Sande (1979)), and discussed by Lee, Rancout and Sarndal (1994),

Rancourt (1999), Chen and Shao (2000), and Shao and Wang (2008). The k-NN

regression and imputation was discussed by Cheng (1984, 1994), and by Ning

and Cheng (2012) for the prediction of the Iris species as an alternative method

to those of CART (Loh and Shih (1997)) and support vector machines (SVM;

Gunn (1998)). With a positive integer k, the k-NN imputation estimator for the

mean is defined as

µ̂kNN =
1

n

n∑
i=1

{δiYi + (1− δi)m̂kNN (Xi)}. (1.6)

Here, the kernel imputation estimates m̂KR(Xi) of (1.5) are replaced by the

nearest neighbor estimates m̂kNN (Xi) = (1/k)
∑k

j=1 Yi(j), using the k nearest

complete pairs {(Xi(j), Yi(j)) : δi(j) = 1, j = 1, . . . , k}, where Xi(j) denotes the jth

nearest neighbor of Xi among the observed pairs. The fixed kernel bandwidth

h of (1.5) is replaced by a random distance from Xi to its kth nearest neighbor

Xi(k) having δi(k) = 1, where the Euclidean or the Mahalanobis distance can be

used. Such distance functions can also be used with the KR estimator (1.5) when

the covariate X is multivariate.

Another nonparametric estimator of the mean is derived from classical in-

verse probability weighting (IPW) due to Horvitz and Thompson (1952). It

estimates the population mean using IPW to reflect the effective sample size

(Cochran (1977)). Under MAR, the naive Horvitz-Thompson (HT) estimator

for µ is

µ̂HT =
1

n

n∑
i=1

δiYi
wi

, (1.7)

where for each i = 1, . . . , n,

wi ≡ p̂(Xi) =

∑n
j=1 δjWh(Xi, Xj)∑n
j=1Wh(Xi, Xj)

(1.8)

is a locally-weighted kernel estimate of the missing pattern function value p(Xi),

as an analog of the regression estimate (1.5). The IPW imputation estimator for

the mean can be derived from the KR imputation, with
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µ̂IPW =
1

n

n∑
i=1

[
m̂KR(Xi) +

δi{Yi − m̂KR(Xi)}
wi

]
, (1.9)

where m̂KR(Xi) and wi are given in (1.5) and (1.8), respectively. Estimator (1.9)

is obtained by replacing m(Xi) and p(Xi) with m̂KR(Xi) and wi, respectively, in

the proof for the asymptotic normality of the KR estimator (1.4) (Cheng (1994)).

The IPW estimator is expected to reduce the sample bias of the KR estimator at

the cost of slightly increased variance, and the advantage is that the IPW often

yields smaller mean squared errors (MSE). A recent simulation study showed that

under regularity conditions (cf. Appendix), HT, IPW, and KR yield comparable

performances of the sample variances, MSE, and the coverage probabilities of

confidence intervals (CCI) (cf. Ning and Cheng (2012)). In theory, it can be

shown that estimators (1.4) (or (1.9)) and (1.7) approximate the same normal

distribution.

Lemma 1. Imputation estimators µ̂KR, µ̂HT , and µ̂IPW approximate the same

normal distribution N(µ, σ2KR) under a common set of regularity conditions,

with asymptotic variance denoted by

σ2KR = V ar(Y ) + E

[
σ2(X){1− p(X)}

p(X)

]
, (1.10)

where σ2(X) = V ar(Y |X).

It is well known that the k-NN and kernel-weighted estimators yield smaller

sample bias but larger variance when using small k or bandwidth h, hence the

opposite with larger k or h, that is, the trade-off effects between sample biases

and variances in choosing k or h. When the missing pattern function has jump

discontinuities or decreases toward zero over an interval in the domain of the

covariate X, two typical non-regularity conditions, the sample bias and variance

of imputation are enlarged when using the KR, HT, and IPW, but the k-NN is

less affected, by definition, and yields small bias and MSE by using small k (Ning

and Cheng (2012)).

These facts lead to the consideration of a convex mixture of the KR esti-

mator (1.4) and the k-NN estimator (1.6). The proposed convex mixtures (CM)

imputation estimator and its IPW version (CMIPW) are defined and examined

in Section 2. A mixed combination of the CM and the IPW can be formulated

as the third convex mixture imputation, termed the convex regression (CR) im-

putation estimator. It is proved that the CR yields smaller asymptotic variance

than the k-NN under regularity conditions such that CR is expected to yield sat-

isfactory performance under general conditions. Section 3 presents a simulation
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study to demonstrate improved performances of the proposed CM, CMIPW, and

CR estimators over existing estimators under two typical non-regular missing

data conditions. A simulation study under standard regularity conditions and

another under an extremely non-regular condition are given in the Supplement.

In Section 4, applications of the CM estimator to predicting unknown classes are

examined using the Iris species and wine-quality taste preference data sets from

the UCI Machine Learning Repository (Lichman (2013)). The CM estimator ac-

quires comparable performances to a few supervised classification methods, but

it is less competitive to the SVM with complex multivariate data as it is not

designed as a supervised learning method. Section 5 concludes the study with a

brief discussion on potential application of the proposed CM and CR imputation

methods to general missing data and classification environments. The Appendix

presents regularity conditions and the proofs for Lemma 1, Theorems 1 and 2.

Two additional simulation cases of regular and non-regular missing data patterns,

basic descriptive statistics of the wine quality data, and related computations are

given in the Supplement.

2. Convex Mixtures Imputation

In this section, new imputation methods using convex mixtures of the KR

and k-NN estimators are introduced. The basic convex imputation estimator for

the mean of the response variable µ = EY is

µ̂CM =
1

n

n∑
i=1

{δiYi + (1− δi)m̂CM (Xi)}, (2.1)

where

m̂CM (Xi) = wim̂KR(Xi) + (1− wi)m̂kNN (Xi), (2.2)

and wi is given in (1.8). By (1.5) and (1.8), the first summand of the convex esti-

mate (2.2) is a local kernel regression estimate based on the observed responses,

and the second summand furnishes the k-NN regression estimate using the non-

observation (missing) weight. Thus it balances the trade-off between the sample

bias and variance given by the two estimates. Similar to reducing the bias (hence

the MSE) of the KR (1.4) by using the IPW (1.9), the IPW version of the CM

estimator is defined as

µ̂CMIPW =
1

n

n∑
i=1

[
m̂CM (Xi) +

δi{Yi − m̂CM (Xi)}
wi

]
. (2.3)

By analogy with the asymptotic equivalence between KR and IPW of Lemma
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1, the same asymptotic normality is acquired by both CM and CMIPW. This is

proved in the Appendix.

Theorem 1. If the regularity conditions (H), (S) and (W) in the Appendix hold,

the imputation estimators µ̂CM of (2.1) and µ̂CMIPW of (2.3) satisfy
√
n(µ̂CM − µ)→ N(0, σ2CM ),

where

σ2CM = V ar(m(X)) + E

{
σ2(X)

p(X)

}
+

1

k
E

[
σ2(X){1− p(X)}3

(
1 +

1

k

)]
, (2.4)

and the first two terms on the right-hand side of (2.4) yield the σ2KR of (1.10).

The asymptotic variances of the imputation estimators, the k-NN (1.6), IPW

(1.9) (or, the KR and HT), CM (2.1), and CMIPW (2.3) can be compared as

follows. From Ning and Cheng (2012, Thm. 1),

σ2kNN = σ2KR +
1

k
E
[
σ2(X){1− p(X)}

]
. (2.5)

The asymptotic variances of (1.10) and (2.4) are related as

σ2CM = σ2KR +
1

k
E

[
σ2(X){1− p(X)}3

(
1 +

1

k

)]
. (2.6)

Under regularity conditions, the CM and CMIPW yield larger variances than

KR and IPW, hence larger MSE, because these estimators are all asymptotically

unbiased under regularity conditions. Under non-regular conditions, KR and

IPW may yield larger bias and MSE. In view of the two IPW versions, the IPW

(of the KR) and CMIPW, it is possible to form a third IPW version using a

combination of these two. It is termed a convex regression (CR) imputation

estimator for the mean µ, defined as

µ̂CR =
1

n

n∑
i=1

[
m̂CM (Xi) +

δi{Yi − m̂KR(Xi)}
wi

]
. (2.7)

Under regularity conditions, the CR yields a different asymptotic normality from

that of the previous estimators.

Theorem 2. Under the conditions of Theorem 1, the CR imputation estimator

µ̂CR satisfies √
n(µ̂CR − µ)→ N(0, σ2CR)

where
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σ2CR = σ2KR +
1

k
E
[
σ2(X){1− p(X)}2

]
(2.8)

From (2.5) and (2.8), σ2CR is larger than σ2KR, but smaller than σ2kNN ,

σ2kNN = σ2CR +
1

k
E
[
p(X){1− p(X)}σ2(X)

]
. (2.9)

Valid theoretical results can only be acquired under regularity conditions, that is,

no theory can be derived under non-regularity conditions as sample bias and MSE

can vary widely when regularity conditions are violated. Typical non-regular

conditions include having jump discontinuites of the missing pattern function

p(x) or the conditional variance function σ2(x), and when p(x) can decrease

toward zero over an interval within the domain of X. To understand the effect

of non-regularity, we examine the sampling bias, variance, MSE, and the CCI of

all imputation estimators under such conditions.

3. Simulation of Mean Imputation

The simulation study was designed to examine the performance of the pro-

posed imputation estimators CM, CMIPW, and CR, compared with existing

estimators k-NN, KR, HT, and IPW. Because all estimators are expected to

perform almost equally well under regularity conditions (cf. Ning and Cheng

(2012)), the simulation study was conducted under two typical non-regular con-

ditions, and those under the regularity and another irregularity condition are

given in the Supplement. The basic form of the regression model is

Y = m(X) + ε, (3.1)

where the error variable ε ∼ N(0, σ2(x)) is assumed to be independent of the

covariate X. In each simulation case, the distribution of X and missing pattern

function p(x) were defined, and random samples of sizes n = 100, 500, 1,000 were

generated using model (3.1). Average imputation estimates of the mean EY

were computed using 1,000 replications, and performances were evaluated using

averaged sample bias, variance, MSE, and CCI. The report of each simulation

case consists of one table, accordingly.

A common kernel function was used for all KR-type estimators, the Epanech-

nikov quadratic kernel function

W (t) =

{
0.75(1− t2), for |t| ≤ 1,

0, otherwise.

If
∑n

j=1Wh(Xi, Xj)δj = 0, so wi = p̂(Xi) = 0, there was no candidate donor

within one-bandwidth distance from the covariate Xi; and, no values were im-



336 NING, LIOU AND CHENG

puted for the missing response when using KR and IPW, and the actual sample

size (reduced by one for each case) for estimating the mean could then be less

than n. This was not applicable for proposed CM, CMIPW, and CR estimators

because a weighted k-NN estimate m̂kNN (Xi) was imputed by definition.

3.1. Case 1

m1(x) = 10− 6{(x1 + x2)− 1.2}2,
(X1, X2) ∼ U([0, 1]2),

E(Y ) = 8.760, E(Yobs) = 8.190,

P (δ = 1) = 0.398, σ2KR = 5.637,

σ2CM = 5.637 + 0.329× 1

k

(
1+

1

k

)
,

σ2CR = 5.637 + 0.413× 1

k
,

p1(x) =


0.7, 0 ≤ x1 + x2 ≤ 0.6,

0.2, 0.6 < x1 + x2 ≤ 1.4,

0.8, 1.4 < x1 + x2 ≤ 2.0,

σ21(x) =


0.16, 0 ≤ x1 + x2 ≤ 0.6,

1.0, 0.6 < x1 + x2 ≤ 1.4,

0.16, 1.4 < x1 + x2 ≤ 2.0.

In this case, a jump discontinuity (line segments in a plane or points in an

interval) in the missing pattern function p(x) or the conditional variance function

σ2(x) violates the regularity conditions (cf. Appendix), and no estimator can

perform well with a sample size such as 100. Being sensitive to discontinuity,

both KR and HT were expected to yield large sample biases and MSEs, hence

are omitted from discussion in this case, although KR always yields smaller

sample variances than the IPW. In fact, large biases of the KR are indicated

by the large variations of the second summand (in the definition of the IPW)

in the calculated replicates of the IPW. The sample variances and MSEs of the

CM are fairly stable across values of h for each k, and the average values over

h are comparable to those of the k-NN for each k. Thus, the choice k = 4 is

recommended to be used for both k-NN and CM because the average sample

variance at k = 4 is near to the median value, but not the minimum, among a

few k neighbors, due to the trade-off effect between the sample bias and variance

(cf. Table 1). By analogy, for the IPW, the choice of h corresponding to the

median value among those having small sample variances when h varies from

0.15 to 0.25, is recommended (cf. Table 1).

One finds that CM yields smaller sample variances but larger biases than

CMIPW. An exception is that the sample variances of CMIPW do not propor-

tionally decrease when the sample size increases from 500 to 1,000. Therefore,

with k larger than 4, the sample MSEs of CMIPW are smaller than those of

CM, k-NN, and IPW when n is around 500, but the opposite holds when CM
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Table 1. Average estimates using different methods under Case 1.

Sample Size n
Method 100 500 1,000

h k Bias n·VAR n·MSE CCI Bias n·VAR n·MSE CCI Bias n·VAR n·MSE CCI
0.10 - −0.244 8.473 14.436 0.877 −0.036 6.239 6.893 0.936 −0.019 5.672 6.014 0.937
0.15 - −0.134 7.044 8.828 0.924 −0.035 5.625 6.233 0.937 −0.035 5.341 6.569 0.917

KR 0.20 - −0.093 6.230 7.103 0.937 −0.059 5.426 7.146 0.919 −0.060 5.196 8.756 0.873
0.15 - −0.126 7.115 8.704 0.928 −0.013 5.988 6.072 0.952 −0.011 5.639 5.751 0.934

IPW 0.20 - −0.072 6.355 6.879 0.942 −0.017 5.771 5.917 0.942 −0.016 5.480 5.723 0.929
0.25 - −0.057 6.035 6.363 0.945 −0.024 5.579 5.873 0.941 −0.023 5.306 5.818 0.924

- 2 −0.078 5.954 6.560 0.936 −0.016 5.937 6.072 0.950 −0.009 5.933 6.016 0.949
k-NN - 4 −0.134 5.859 7.644 0.916 −0.029 5.522 5.944 0.943 −0.015 5.583 5.819 0.935

- 8 −0.236 6.219 11.804 0.864 −0.055 5.487 7.008 0.924 −0.028 5.357 6.130 0.923
0.10 2 −0.075 5.964 6.528 0.936 −0.017 5.908 6.051 0.952 −0.011 5.851 5.967 0.943
0.15 2 −0.076 5.934 6.508 0.937 −0.020 5.838 6.040 0.948 −0.015 5.766 5.976 0.941

CM 0.10 4 −0.125 5.884 7.448 0.916 −0.028 5.552 5.937 0.944 −0.016 5.555 5.807 0.937
0.15 4 −0.124 5.844 7.371 0.918 −0.031 5.522 5.989 0.944 −0.019 5.507 5.882 0.935
0.10 8 −0.217 6.180 10.880 0.871 −0.050 5.478 6.718 0.930 −0.026 5.356 6.045 0.925
0.15 8 −0.211 6.102 10.559 0.871 −0.052 5.455 6.816 0.927 −0.029 5.332 6.195 0.924
0.20 4 −0.098 6.387 7.344 0.932 −0.017 5.838 5.984 0.953 −0.009 6.051 6.137 0.956
0.25 4 −0.089 6.303 7.088 0.931 −0.019 5.662 5.848 0.953 −0.012 5.937 6.071 0.956
0.30 4 −0.086 6.190 6.932 0.931 −0.023 5.532 5.788 0.953 −0.015 5.853 6.072 0.955
0.20 8 −0.132 6.451 8.194 0.924 −0.019 5.571 5.755 0.951 −0.012 5.921 6.064 0.955

CMIPW 0.25 8 −0.111 6.290 7.527 0.932 −0.022 5.427 5.668 0.949 −0.015 5.799 6.010 0.953
0.30 8 −0.103 6.121 7.175 0.934 −0.026 5.311 5.649 0.949 −0.018 5.721 6.045 0.950
0.20 16 −0.186 7.035 10.506 0.901 −0.025 5.522 5.828 0.947 −0.015 5.781 5.998 0.947
0.25 16 −0.154 6.665 9.034 0.917 −0.028 5.391 5.775 0.945 −0.018 5.665 5.995 0.947
0.30 16 −0.141 6.337 8.319 0.923 −0.033 5.284 5.820 0.940 −0.022 5.592 6.092 0.945
0.10 4 −0.124 5.910 7.449 0.917 −0.021 5.784 6.009 0.951 −0.007 5.826 5.876 0.944
0.15 4 −0.118 5.889 7.272 0.922 −0.010 5.869 5.918 0.955 0.004 5.885 5.900 0.944
0.20 4 −0.106 5.884 7.012 0.929 0.005 5.907 5.918 0.949 0.018 5.899 6.219 0.941
0.10 8 −0.216 6.203 10.859 0.870 −0.043 5.666 6.603 0.930 −0.017 5.548 5.850 0.932

CR 0.15 8 −0.205 6.129 10.337 0.873 −0.032 5.706 6.202 0.944 −0.006 5.590 5.629 0.942
0.20 8 −0.192 6.072 9.746 0.885 −0.016 5.732 5.868 0.945 0.008 5.636 5.702 0.944
0.20 16 −0.302 7.071 16.177 0.812 −0.058 5.596 7.261 0.923 −0.012 5.448 5.594 0.934
0.25 16 −0.281 6.842 14.753 0.827 −0.040 5.547 6.336 0.931 0.005 5.389 5.412 0.942
0.30 16 −0.260 6.697 13.445 0.844 −0.021 5.505 5.735 0.946 0.022 5.337 5.825 0.935

uses k between 2 and 4 and IPW uses h less than 0.30 when n is as large as

1,000. CMIPW also yields slightly smaller sample variances and performs better

than the CR when using k between 4 and 8 with sample size about 500. For

larger sample sizes around 1,000, CR gives the smallest MSEs by using the pairs

(h ∈ (0.15, 0.20), k = 8) and (h ∈ (0.20, 0.25), k = 16) subject to the trade-off

effect. The choices of k and h corresponding to the smallest sample variances can

be recommended for all imputation estimators under the regularity conditions,

(i.e., simulation Case 3), because the magnitudes of sample biases of all estima-

tors are negligibly small such that slight differences in the sample MSEs are also

negligible (cf. Tables S1 and S2).
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Table 2. Average estimates using different methods under Case 2.

Sample Size n
Method 100 500 1,000

h k Bias n·VAR n·MSE CCI Bias n·VAR n·MSE CCI Bias n·VAR n·MSE CCI
0.4 - 0.535 32.754 61.344 0.835 0.092 24.756 28.995 0.929 0.034 19.490 20.665 0.943

KR 0.6 - 0.401 33.764 49.840 0.886 0.081 20.308 23.563 0.932 0.052 17.641 20.342 0.925
0.8 - 0.331 32.020 42.986 0.897 0.100 17.961 22.921 0.917 0.083 16.972 23.864 0.905
0.6 - 0.384 33.853 48.610 0.891 0.049 20.769 21.955 0.941 0.015 18.148 18.381 0.950

IPW 0.8 - 0.297 32.208 41.055 0.904 0.041 18.676 19.512 0.949 0.019 17.582 17.936 0.948
1.0 - 0.244 29.812 35.751 0.921 0.044 17.821 18.795 0.950 0.026 17.455 18.153 0.945
- 1 0.116 21.753 23.104 0.953 0.027 18.101 18.477 0.947 0.009 18.847 18.935 0.950

k-NN - 2 0.184 21.142 24.509 0.939 0.042 18.044 18.914 0.947 0.014 18.079 18.285 0.948
- 4 0.309 20.637 30.179 0.906 0.069 18.179 20.582 0.940 0.027 18.064 18.766 0.951

0.2 1 0.117 21.653 23.013 0.950 0.028 17.997 18.380 0.951 0.010 18.587 18.697 0.948
0.4 1 0.119 21.558 22.965 0.949 0.031 17.950 18.430 0.950 0.014 18.534 18.726 0.947
0.2 2 0.180 21.127 24.360 0.940 0.042 17.973 18.839 0.948 0.015 18.003 18.234 0.946

CM 0.4 2 0.181 21.060 24.337 0.938 0.045 17.944 18.948 0.948 0.019 17.975 18.320 0.947
0.2 4 0.295 20.674 29.386 0.912 0.068 18.087 20.380 0.939 0.027 17.981 18.691 0.952
0.4 4 0.294 20.622 29.263 0.911 0.071 18.069 20.573 0.939 0.030 17.967 18.866 0.946
0.6 1 0.116 21.528 22.884 0.952 0.027 17.935 18.312 0.951 0.010 18.508 18.607 0.948
0.8 1 0.117 21.512 22.879 0.951 0.028 17.906 18.304 0.949 0.011 18.480 18.594 0.946
1.0 1 0.118 21.497 22.890 0.951 0.030 17.877 18.316 0.949 0.012 18.457 18.605 0.946
0.6 2 0.147 21.586 23.749 0.947 0.030 17.890 18.342 0.952 0.012 18.099 18.233 0.947

CMIPW 0.8 2 0.141 21.745 23.726 0.948 0.031 17.849 18.336 0.951 0.013 18.014 18.175 0.945
1.0 2 0.138 21.803 23.698 0.951 0.034 17.730 18.300 0.953 0.014 17.983 18.192 0.945
0.6 4 0.201 21.806 25.845 0.938 0.035 17.865 18.465 0.953 0.013 17.685 17.865 0.953
0.8 4 0.184 22.098 25.485 0.941 0.036 17.790 18.428 0.952 0.015 17.618 17.851 0.950
1.0 4 0.175 22.210 25.271 0.938 0.039 17.601 18.381 0.948 0.018 17.621 17.938 0.950
0.2 1 0.116 21.705 23.042 0.953 0.024 18.120 18.416 0.949 0.007 18.790 18.838 0.950
0.4 1 0.112 21.635 22.881 0.951 0.016 18.259 18.386 0.952 −0.005 19.062 19.085 0.952
0.6 1 0.104 21.693 22.773 0.954 −0.001 18.491 18.491 0.947 −0.023 19.111 19.630 0.948
0.2 2 0.179 21.156 24.352 0.940 0.038 18.021 18.753 0.947 0.012 18.114 18.250 0.948

CR 0.4 2 0.174 21.106 24.135 0.939 0.030 18.153 18.597 0.948 −0.000 18.396 18.396 0.954
0.6 2 0.166 21.173 23.927 0.941 0.013 18.340 18.427 0.950 −0.018 18.480 18.808 0.949
0.2 4 0.294 20.697 29.348 0.907 0.064 18.097 20.171 0.939 0.023 18.038 18.573 0.952
0.4 4 0.287 20.652 28.885 0.915 0.056 18.200 19.754 0.944 0.011 18.273 18.402 0.953
0.6 4 0.278 20.725 28.443 0.919 0.039 18.360 19.121 0.953 −0.007 18.339 18.385 0.955

3.2. Case 2

m2(x) = 2x+ 1, x ∈ (−3, 4), E(Y ) = 2.90, E(Yobs) = 4.740,

X ∼ 0.3U(−3, 0) + 0.7U(0, 4), P (δ = 1) = 0.647, σ2KR = 18.004,

p2(x) =
ex

1 + ex
, σ2CM = 18.004 + 0.169× 1

k

(
1 +

1

k

)
,

σ22(x) = 1, σ2CR = 18.004 + 0.224× 1

k
.

Here all regularity conditions are satisfied except that the smooth p(x) de-

creases toward 0 only at the left-end point (x = −3.0) in the domain of X. No
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estimator can be consistent with sample size n = 100, and KR also fails to be

consistent with enlarged sample biases. The k-NN is consistent for k between 1

and 2, when n = 500, and k between 1 and 4, when n = 1,000. The performances

of CM and k-NN are comparable, CM yields slightly smaller sample variances,

but larger sample biases at k = 1 when n = 500, and at k = 2 when n = 1,000

are recommended for both estimators. IPW yields larger sample biases than 0.04

when n = 500, and it is consistent only with h ∈ (0.6 1.0) when n = 1,000. Both

k-NN and CM perform better than the IPW by using k = 1 with moderately

large sample size n = 500 (cf. Table 2).

Meanwhile, CMIPW (using k = 1 to 4) and CR (using k = 1 to 2) also

perform better than the IPW when n = 500. CMIPW yields smaller sample

variances and MSEs compared with CR, although CR yields smaller sample bi-

ases; CMIPW gives smaller sample MSEs than the IPW, when using the pairs

(h ∈ (0.6 1.0), k = 4) with n = 1,000. These results seem to convey a useful

message, in that the widely discussed non- and semi-parametric IPW estimators

may not perform well at sample sizes of about 500, and do not yield the smallest

MSEs with sample sizes of about 1,000 when the popular logistic missing pattern

function decreases toward zero at the domain boundary of the covariate X. This

regularity condition (S) in the Appendix is only required for the KR and HT

estimators in view of Appendix (A.1).

In the Supplement, simulation Case 3 (Tables S1 and S2) presents essentially

equal performances of all the estimators under regularity conditions. Simulation

Case 4 (Table S3) uses the model conditions of Case 2, but replaces the exponent

x of p(x) in Case 2 with 2.5x such that p(x) decreases to 0 at a fast rate at an end

point of the covariate X. In this case, it is found that only CR is able to yield

consistent imputation by giving sample biases of magnitude less than 0.10, and

the CCI estimates greater than 0.90 when using the bandwidths h ∈ (0.6, 1.0),

and when the sample sizes are larger than 2,000.

4. Empirical Study of Prediction Effect

4.1. Iris flower data

The iris flower data set has been discussed using the linear discrimination

analysis. The data set consists of 50 samples from each of three species of iris

flowers: setosa, virginica and versicolor. Four features were measured for each

sampled species, the descriptions and scatter plots can be found in the UCI

Machine Learning Repository (MLR, http://archive.ics.uci.edu/ml). The

http://archive.ics.uci.edu/ml
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attribute of interest is the species classification variable, denoted by Y , where

Y = 0 defines the iris setosa, Y = 1 the virginica, and Y = 2 the versicolor. The

useful covariate is the four-dimensional predictor vector X = (X1, X2, X3, X4), as

(Sepal length, Sepal width, Petal length, Petal width). In view of the two-variable

scatter plots, the species may be well classified using a discrimination rule such as

CART based on the joint distribution of (X3 = petal length, X4 = petal width)

without the need of other features, for example, Loh and Shih (1997). Suppose

that regression prediction methods are evaluated using training and test samples

of the iris data, for which an MAR design is used to define observed (training) and

missing (test) samples. Without using structural relations between the species

and the features in the bivariate data plots, as in CART, the least informative

evenly-spread feature X2, the sepal width, can be used to generate observed and

missing samples. As in Ning and Cheng (2012), the evaluation was based on

simulating a fixed missing pattern in the entire training-and-testing procedure:

p(x) =

{
0.7, x2 < 0.3,

0.1, x2 ≥ 0.3,
(4.1)

where E{p(X)} = 0.328, and about two-thirds of the species types were generated

as missing in the evaluation study. To predict the unobserved iris species Y in

discrete responses, kernel imputation estimates of (1.5) were taken as

m̂KR(Xi) = arg max
t
{aKR(Xi, t)},

where

aKR(Xi, t) =

∑n
j=1 δjWh(Xi, Xj)I(Yj = t)∑n

j=1Wh(Xi, Xj)δj
, t = 0, 1, 2 (4.2)

and I(Yj = t) = 1 when Yj = t, and otherwise it is equal to 0. The k-NN

imputation estimates were modified from (1.6) as

m̂NN (Xi) = arg max
t

(aNN (Xi, t)),

where

aNN (Xi, t) =
1

k

k∑
j=1

I(Yi(j) = t), t = 0, 1, 2. (4.3)

Similarly, the proposed CM imputation estimates (2.2) were modified as

m̂CM (Xi) = arg max
t

(aCM (Xi, t)),

where

aCM (Xi, t) = p̂(Xi)aKR(Xi, t) + {1− p̂(Xi)}aNN (Xi, t), (4.4)
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Table 3. Average KR and k-NN prediction accuracy for the iris species.

KR k-NN
h PA (s.e.) k PA (s.e.)

0.8 0.9312 (0.0380) 1 0.9697 (0.0148)
1.0 0.9488 (0.0262) 2 0.9628 (0.0198)
1.2 0.9609 (0.0191) 4 0.9597 (0.0439)
1.5 0.9502 (0.0196) 8 0.9220 (0.1413)
1.8 0.9370 (0.0228) - -

*PA (s.e.) values are averages of 500 replicates.

Table 4. Average CM prediction accuracy for the iris species.

h \ k 1 2 4 8
0.1 0.970 (0.015) 0.966 (0.014) 0.960 (0.044) 0.956 (0.070)
0.2 0.970 (0.015) 0.966 (0.014) 0.961 (0.043) 0.955 (0.070)
0.5 0.970 (0.015) 0.970 (0.015) 0.965 (0.044) 0.937 (0.102)
0.6 0.970 (0.015) 0.971 (0.014) 0.966 (0.044) 0.932 (0.116)
0.8 0.970 (0.015) 0.970 (0.013) 0.965 (0.043) 0.927 (0.131)
1.0 0.970 (0.015) 0.970 (0.013) 0.965 (0.043) 0.925 (0.138)
1.2 0.970 (0.015) 0.967 (0.015) 0.961 (0.043) 0.922 (0.140)
1.5 0.970 (0.015) 0.964 (0.017) 0.957 (0.044) 0.918 (0.141)
1.8 0.970 (0.015) 0.963 (0.018) 0.957 (0.044) 0.918 (0.141)

*PA (s.e.) values are averages of 500 replicates.

for t = 0, 1, 2 and the weight estimates p̂(Xi) defined in (1.8). For each replicated

data set, imputation estimates (4.2) to (4.4) were used to predict the unknown

(missing) species using the observed training sample. The simulation was re-

peated five hundred times (n = 500), the average prediction accuracy (PA)

PA =

∑n
i=1(1− δi)I(m̂(Xi) = Yi)∑n

i=1(1− δi)
(4.5)

and its standard error (se) were calculated for the predicted values m̂(Xi) =

m̂KR(Xi), m̂NN (Xi) and m̂CM (Xi) of (4.2) to (4.4), as listed in Tables 3 and 4.

In Table 3, the best choice of k (k = 1) for the k-NN is seen to yield the

minimal sample standard error of prediction (0.0148) with the maximal average

PA, 0.9697, or 3.03% prediction error rate. The KR yields its maximal average

PA, 0.9609, using a bandwidth about h = 1.2 by its minimal sample standard

error, 0.0191. In Table 4, the proposed CM imputation method outperforms the

k-NN and KR by using the pair (h ∈ (0.6 1.0), k = 1 or 2) with minimal sample

standard error, 0.013 - 0.015. CM yields the best average PA (0.970 to 0.971),

or 3.0% average prediction error rate. A 95% confidence interval of the
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PA statistics of the CM prediction (k = 2) is given as (0.945, 0.995), which is

slightly preferred to the CART results of Loh and Shih (1997), and the SVM

results of Gunn (1998).

4.2. Wine quality data

Cortez et al. (2009) proposed a method based on the SVM to predict human

wine taste preference using a data set of Portugal white and red vinho verde

wine samples, consisting of 1,599 red wine samples and 4898 white wine samples.

For both samples, eleven physicochemical features denoted as X1, . . . , X11 are

recorded and the output variable, Y , is the wine quality graded score between 0

(poor) and 10 (excellent). Supplementary Table S4 lists the descriptive statistics

of these features of both samples according to Cortez et al. (2009, Table 1).

In their study, the authors trained variable selection by SVM and analyzed the

variability of the wine quality Y when the chosen predictor features varied with

different levels while holding the other features fixed at the average levels. The

predictor variables causing the largest variability on Y were regarded as the most

relevant features to the wine quality. For both red and white wine data, the

predictor features were ranked. The most important features related to the red

wine quality were found as pH (X9), sulphates (X10), and total sulfur dioxide

(X7). For white wine, they were sulphates (X10), alcohol (X11) and residual

sugar (X4).

We borrowed a probabilistic missing data mechanism approach to evaluating

the prediction of unknown (artificial missing) wine quality scores under a conve-

nient MAR design. For the current multi-dimensional features of wine quality,

the three most relevant features of wine quality were used to define missing data

patterns for red and white wine data samples, with

Pred(unobserved|x) = pred(x) =
1

1 + e(x7+x9+x10)
, (4.6)

and

Pwhite(unobserved|x) = pwhite(x) =
1

1 + e(x4+x10+x11)
. (4.7)

The average missing rate for the red wine was 0.5104 by (4.6), and that for

the white wine was 0.4781 by (4.7). The average missing rates (proportions of

test samples by the cross-validation design) for both red and white wine were

about 0.33 in the study of Cortez et al. (2009). It is known that missing rates

closer to 0.50 are statistically more fairly-judged than 0.33 in the evaluation of

cross-validation. Missing patterns (4.6) and (4.7) were repeatedly simulated 500
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times for each wine data, where the predicted regression estimates of the missing

units were calculated using the observed (training) sample. Following Wang et

al. (2003) and Cortez et al. (2009), two evaluation criteria for the prediction

performance were measured: the mean absolute deviation

MAD =
1

n

n∑
i=1

|yi − ŷi|, (4.8)

and the PA within a tolerance limit T (T = 0.25, 0.50 and 1.0)

PA(T ) =
1

n

n∑
i=1

1[0,T ](|yi − ŷi|). (4.9)

Here, yi denotes the unobserved true integer score; ŷi denotes the predicted value

for yi; n is the number of unobserved units, and 1A(·) is the indicator function.

The average MAD and corresponding PA(T) values of the three predictors, KR,

k-NN and CM, and their standard errors were calculated from these 500 simulated

replicates. The bandwidth parameter and the number k of nearest neighbors

could be directly selected according to the best average performance among the

training samples. Estimates of the MAD and corresponding PA(T) values, and

their standard errors in predicting the missed (tested) wine sample integer scores

Y are recorded in Table 5. For comparison, we also list the performance results

of three existing classifiers, multiple linear regression (MR), neural network (NN,

cf. Sun, Danzer and Thiel (1997)) and SVM as given in Cortez et al. (2009,

Table 2). Modified calculations using unequal k-NN weights can be found in

Supplementary Tables S5 to S8. The minimal average MAD, the corresponding

PA(T) values, and the standard errors are listed against the parameter values h,

k and (h, k) on the left-hand side column of each table. Here weighted k-NN

estimators (using unequal k-NN weights) were used with the CM predictor, as

uniform weights (1/k) could inflate the PA values when using a closed tolerance

interval [0, T ] at (4.9) (cf. Cortez et al. (2009, Sec. 2.2)). To predict integer raw

scores, such inflation of estimated PA values could arise when T = 0.50 or 1.0,

and when moderately small k (2, 4, 8 and 16) were used with the k-NN and CM

predictors; this could yield estimates having decimals exactly equal to 0.50 or 0.0.

As shown in Table 5, the performances of KR and k-NN, being plain regression

predictors, are not expected to be as effective as the existing methods. Improving

upon the KR and k-NN prediction, the proposed CM predictor yields comparable

performance to the classical MR and NN, giving slightly greater PA values at the

standard tolerance level T = 0.50. The results also show that the CM is inferior

to the SVM due to two obvious facts. First, the CM was used for testing about
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Table 5. Average MAD and PA (T) values for the red and white wine data.

Wine Method MAD PA (T = 0.50) PA (T = 1.0)
KR (s.e.) 0.551 (0.011) 0.568 (0.016) 0.880 (0.009)
(h = 2.5)
MR (C.I.) 0.500 (± 0.000) 0.591 (± 0.001) 0.886 (± 0.001)
k-NN (s.e.) 0.537 (0.011) 0.569 (0.016) 0.879 (0.009)

White Wine (k = 32)
NN (C.I.) 0.51 (± 0.000) 0.591 (± 0.003) 0.888 (± 0.002)
CM (s.e.) 0.514 (0.011) 0.596 (0.016) 0.886 (0.009)
(h = 0.5, k = 32)
SVM (C.I.) 0.46 (± 0.000) 0.624 (± 0.004) 0.890 (± 0.002)
KR (s.e.) 0.617 (0.009) 0.490 (0.009) 0.832 (0.006)
(h = 2.5)
MR (C.I.) 0.59 (± 0.000) 0.517 (± 0.001) 0.843 (± 0.001)
k-NN (s.e.) 0.600 (0.009) 0.515 (0.011) 0.830 (0.006)

Red Wine (k=32)
NN (C.I.) 0.58 (± 0.000) 0.526 (± 0.003) 0.847 (± 0.001)
CM (s.e.) 0.583 (0.009) 0.534 (0.011) 0.837 (0.006)
(h = 0.5, k = 32)
SVM (C.I.) 0.45 (± 0.000) 0.646 (± 0.004) 0.868 (± 0.004)

*PA(T) values using different h, k, (h, k) are given in Tables S5-S8.

50% missing units in the data by the missing patterns (4.6) and (4.7), whereas the

SVM was used for testing one-third missing units (Cortez et al. (2009)). Second,

the missing patterns (4.6) and (4.7) were not defined or modified by a sensitivity

analysis between the eleven features and the incomplete response variable; this

differs from the main-stream supervised learning methods by using the same

(h, k) pair of parameters in the CM method with both training and testing

samples throughout the entire simulation process without supervised learning or

updated modification. Thus CM prediction takes the least computational effort

when compared with the supervised learning methods MR, NN and SVM.

5. Discussion

For survey data with missing items of individual units, missing data patterns

can be estimated using the basic KR regression estimates as functions of contin-

uous covariates without assuming parametric models under the MAR condition.

The proposed convex mixtures of regression imputation estimators for the mean,

the CM, CMIPW, and CR, can yield more stable or improved performance as

against the k-NN, KR, and IPW under non-regular missing pattern functions and

joint distributions, that accommodate general missing data conditions in prac-
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tice. It is cautioned in Section 3 that all imputation estimators, but the CR, can

fail to be consistent if the observation rates p(x) decrease rapidly toward zero in

the domain of the predictor X.

In the machine learning literature, k-NN regression, multiple linear regres-

sion, and neural networks have been widely used in classification (e.g., Huang et

al. (2004); Kiang (2003)). By using families of kernel functions with optimiza-

tion techniques, the SVM is able to yield more efficient classification (Smola and

Scholkopf (2004)). In the empirical study of the Iris data in Section 4, the pro-

posed CM prediction is shown to yield improved performance over the KR and

k-NN, and improved confidence interval over CART and SVM. For the wine qual-

ity data with a more sophisticated joint distribution, CM prediction was found to

yield comparable performance to the classical MR and NN, but less satisfactory

results when compared with the SVM; CM is only a semi-supervised learning

method that uses the least amount of computation among these methods. In a

future study, we expect to improve the performance of the CM prediction when

the simple missing mechanisms (4.6) and (4.7) are replaced by functions that

carry more information between the response variable and the explanatory fea-

tures in the wine quality data. The estimators CMIPW and CR are potentially

useful for providing multiple imputation estimates for possible improvement of

prediction accuracy.

The introduction of convex mixture imputation using the CM prediction, the

CMIPW and CR estimation can be useful with general missing data. For exam-

ple, the topic of adaptive local estimation of the regression function under general

missing data conditions is a basic problem for which the proposed estimators are

applicable. In the world of data mining, it is remarkable that the proposed CM

can often yield improved prediction over the k-NN, but further study is needed

to enhance the prediction accuracy of the CM by using more data information.

Supplementary Materials

There are three parts in the online Supplementary Materials: simulation Case

3 which shows the performances of all imputation estimators under regularity

conditions; simulation Case 4 that gives these performances under the conditions

of Case 2 but using a severely sparse missing pattern function e2.5x instead of ex;

descriptions of wine quality data are given, and modified nearest neighbor weights

are defined for weighted k-NN estimators that slightly improve the accuracy in

the prediction of the wine quality data.
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Appendix

The proofs for Lemma 1 and Theorems 1 and 2 need regularity conditions on

the kernel, the bandwidth, the regression function m(x), and the missing pattern

p(x) as follows.

(W) The kernel function W is a symmetric probability density function (pdf)

defined on a bounded interval on the line or d-dimensional Euclidean Rd

such that
∫
|u|2W (u)du is finite.

(H) The kernel weights Wh(u, x) = h−1W ((u− x)/h) are defined with a de-

creasing sequence of bandwidths h (= h(n)) such that h(n)→ 0, nh2 →∞
and nh4 → 0. (Extensions of condition (H) to the Rd case can be found in

Cheng (1994, Appendix)).

(S) EY 2 and E{σ2(X)/p(X)} are finite. The regression function m(x), the

missing pattern function p(x), and the conditional variance function σ2(X)

have bounded second-order derivatives, and p(x) cannot decrease toward

zero in an interval within the domain of the covariate X.

Proof of Lemma 1

We first prove that the KR imputation estimator (1.4) and the IPW impu-

tation estimator (1.9) are asymptotically equivalent in distribution. A proof for

the same property of the HT estimator µ̂HT (1.7) follows immediately.

We recall the proof of asymptotic normality for µ̂KR (Cheng (1994, Ap-

pendix)). There, a basic expression is µ̂KR − µ = R + S + TKR, where R =

(1/n)
∑n

i=1{m(Xi)−µ}, S = (1/n)
∑n

i=1 δi{Yi−m(Xi)}, and TKR = (1/n)
∑n

i=1(1−
δi){m̂KR(Xi) −m(Xi)}. It was shown that,

√
n(TKR − Un) → 0 in probability

as n→∞, by mean-square convergence of m̂KR(X) to m(X). This is expressed

by

TKR ' Un =
1

n

n∑
i=1

δi{Yi −m(Xi)}{1− p(Xi)}
p(Xi)

(A.1)

Omitting the parameter µ, it follows by (A.1) and (1.9) that
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µ̂KR '
1

n

n∑
i=1

m(Xi) + S +
1

n

n∑
i=1

δi{Yi −m(Xi)}{1− p(Xi)}
p(Xi)

=
1

n

n∑
i=1

m(Xi) +
1

n

n∑
i=1

δi{Yi −m(Xi)}
p(Xi)

' µ̂IPW (A.2)

In the last step of (A.2), by analogy with the proof for (A.1), the asymptotic

equivalence to µ̂IPW is justified when m(Xi) and p(Xi) are estimated (and re-

placed) by m̂KR(Xi) of (1.5) and wi of (1.8), respectively. This proves that µ̂IPW

approximates N(µ, σ2IPW ) and σ2IPW = σ2KR as in (1.10). The same arguments

for (A.1) and (A.2) also prove that the naive kernel estimator (1.3) approximates

the same normal distribution (Cheng and Wei (1986)).

Next, we show that µ̂HT approximates the same normal distribution in the

first step above. Writing µ̂HT −µ = R+SHT , where SHT = n−1
∑n

i=1{(δiYi)/wi

−m(Xi)}, the conditional expectation of SHT given the covariates {Xi, i =

1, 2, . . . , nx} is asymptotically negligible, or of magnitude o(1/
√
n) in probability.

This follows from

E

{
E

(
δiYi
wi

∣∣∣∣Xi

)
−m(Xi)

}
= E

[
E

{
p(Xi)

wi
− 1

}
m(Xi)

]
= E

[∑
j Wh(Xj , Xi){p(Xj)− p(Xi)}∑

j Wh(Xj , Xi)δj
m(Xi)

]
= O(h2) (A.3)

which yields the desired result because
√
nh2 → 0 by condition (H). It also implies

that the variance of the sample average of left-hand side of (A.3) is asymptotically

negligible. As V ar(R) = V ar[m(X)], it remains to show that the expectation

of the conditional variance of SHT given the covariates {Xi}’s yields the desired

approximate variance. This can be expressed as

E

{
V ar

(
δiYi
wi

∣∣∣∣Xi

)}
= E

[
p(Xi)σ

2(Xi)

p2(Xi){1 +O(h2)}

]
= E

[
σ2(Xi)

p(Xi){1 +O(h2)}

]
' E

{
σ2(X)

p(X)

}
(A.4)

The sum of V ar(R) and the right-hand-side of (A.4) yields the desired asymptotic

variance σ2HT (= σ2KR), and concludes the proof of Lemma 1.
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Proof of Theorem 1

The imputation estimator (2.1) can be expressed as

µ̂CM =
1

n

n∑
i=1

m(Xi) + S + TCM , (A.5)

where TCM = (1/n)
∑n

i=1(1−δi){m̂CM (Xi)−m(Xi)}, and the convex imputation

estimate is m̂CM (Xi) = wim̂KR(Xi) + (1 − wi)m̂kNN (Xi) of (2.2). It follows

from TKR of (A.1) that the sample average of the first summand, wim̂KR, is

asymptotically equivalent to the term T1 of (A.6) below, and the average of

the second summand, (1 − wi)m̂kNN , is asymptotically equivalent to the last

summand T2 in (A.6); this follows from the proof for the asymptotic normality

of µ̂kNN (Ning and Cheng (2012, Appendix)). These two facts yield

TCM =
1

n

n∑
i=1

(1− δi)[wi{m̂KR(Xi)−m(Xi)}

+ (1− wi){m̂kNN (Xi)−m(X)}]

' 1

n

n∑
i=1

δi{Yi −m(Xi)}{1− p(Xi)}(≡ T1)

+
1

n

n∑
i=1

(1− δi){1− p(Xi)}

1

k

k∑
j=1

{Yi(j) −m(Xi(j))}

 (≡ T2).

Hence, it is seen that (A.5) is asymptotically equivalent to

µ̂cm − µ =
1

n

n∑
i=1

{m(Xi)− µ}(≡ R)

+
1

n

n∑
i=1

δi{Yi −m(Xi)}{2− p(Xi)}(≡ S + T1) + T2

= R+
1

n

n∑
i=1

δi{Yi −m(Xi)}{2− p(Xi)}(≡ S∗) + T2. (A.6)

It follows from (A.6) that E(R) = E(S∗) = E(T2) = 0, Cov(R,S∗) = 0 =

Cov(R, T2), nV ar(R) = V ar(m(X)),

nV ar(S∗) = E[p(X){2− p(X)}2σ2(X)] and the remaining covariance terms are

nV ar(T2) =
1

k
E
[
{1− p(X)}3σ2(X)

]
+ E

[
{1− p(X)}3σ2(X)

p(X)

]
;

2nCov(S∗, T2) = 2E
[
{1− p(X)}2{2− p(X)}σ2(X)

]
. (A.7)

The sum of the three variance terms and the covariance term in (A.7) is
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σ2CM = V ar(m(X)) + E

{
σ2(X)

p(X)

}
+

1

k
E

[
σ2(X){1− p(X)}3

(
1 +

1

k

)]
= σ2KR +

1

k
E

[
σ2(X){1− p(X)}3

(
1 +

1

k

)]
. (A.8)

The right-hand side of (A.8) is equal to (2.4), which proves Theorem 1.

Proof of Theorem 2

By definition, the convex imputation estimator (2.7) is expressed as

µ̂CR − µ =
1

n

n∑
i=1

[
m̂CM (Xi) +

δi{Yi − m̂KR(Xi)}
wi

]
− µ

= R+
1

n

n∑
i=1

wi{m̂KR(Xi)−m(Xi)}

+
1

n

n∑
i=1

(1− wi){m̂kNN (Xi)−m(Xi)}+
1

n

n∑
i=1

δi{Yi − m̂KR(Xi)}
wi

which can be shown, by analogy with (A.6), as asymptotically equivalent to

µ̂CR − µ ' R+ S +
1

n

n∑
i=1

{1− p(Xi)}

[
1

k

k∑
i=1

{Yi(j) −m(Xi(j))}

]
(A.9)

using the same R and S of (A.1). It follows by a similar analysis to (A.7) that

the variance of (A.9) is equal to

σ2CR = V ar(m(X)) + E{p(X)σ2(X)}+ 2E[{1− p(X)}σ2(X)]

+
1

k
E
[
σ2(X){1− p(X)}2

]
+ E

[
σ2(X){1− p(X)}2

p(X)

]
= V ar(m(X)) + E

{
σ2(X)

p(X)

}
+

1

k
E
[
σ2(X){1− p(X)}2

]
. (A.10)

The right-hand side of (A.10) is equal to (2.8), and the proof for Theorem 2 is

complete.
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