
A Comparison Study of Nonparametric Imputation Methods

Ning Jianhui1, Philip E. Cheng2∗

1. Department of Mathematics and Statistics, Central China Normal University, Wuhan, CHINA
2. Institute of Statistical Science, Academia Sinica, Taipei, TAIWAN

Abstract Consider estimation of a population mean of a response variable when the observations are

missing at random with respect to the covariate. Two common approaches to imputing the missing

values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse

weighting approach. The regression approach includes the kernel regression imputation and the near-

est neighbor imputation. The HT approach, employing inverse kernel-estimated weights, includes

the basic estimator, the ratio estimator and the estimator using inverse kernel-weighted residuals.

Asymptotic normality of the nearest neighbor imputation estimators is derived and compared to ker-

nel regression imputation estimator under standard regularity conditions of the regression function

and the missing pattern function. A comprehensive simulation study shows that the basic HT estima-

tor is most sensitive to discontinuity in the missing data patterns, and the nearest neighbors estimators

can be insensitive to missing data patterns unbalanced with respect to the distribution of the covari-

ate. Empirical studies show that the nearest neighbor imputation method is most effective among

these imputation methods for estimating a finite population mean and for classifying the species of

the iris flower data.

Keywords: Classification, Inverse weighting, Kernel regression, Missing at random, Nearest neighbor

imputation.

1 Introduction

Proportional weighting and the Horvitz-Thompson (HT) inverse weighting (Horvitz and Thompson,

1952) for estimating a population parameter are commonly used in the analysis of stratified sampling

(Cochran, 1977). Without assuming a parametric model, a nonparametric regression approach to esti-

mating a population mean can be fairly efficient when the underlying joint distribution satisfies certain

regularity conditions. The validity of these conditions may not be easily tested when the observed
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data are incomplete or partly missing. While nonparametric inference can hardly be examined for

cases without regularity conditions, it is nevertheless useful to investigate the difference in compu-

tational performance between the nonparametric regression estimation and the HT estimation. This

aims to compare the methods of estimation for missing data beyond the usual regularity conditions

on the underlying distribution.

Consider estimating the population mean of a response variable when the responses could be

missing depending on a covariate. This type of missing data commonly arises in survey question-

naires conducted in many areas of applied science, and nonresponses to ambiguous cases could lead

to biased inference without effective correction by randomization (Cochran, 1977). It also occurs

when a double sampling design is used to omit some responses due to demographic constraints (Ney-

man, 1938). If the missing mechanism is not completely random, a measure of its dependence on

other covariates can be used to impute values for the nonresponses to rectify the potentially biased

inference. Statistical inference with partial nonresponse data has been widely discussed since the

early work by Yates (1933), Anderson (1957), Orchard and Woodury (1972), see for example, Little

and Rubin (2002). Analysis with data missing at random (MAR, Rubin, 1976), and the EM algorithm

(Dempster et al., 1977) have been extensively used in the literature. The MAR condition is a basic

assumption upon which most parametric and semiparametric inference with missing data have been

developed.

Suppose a random sample with incomplete responses and complete covariates is observed from a

double sampling design, and denoted by

(Xi,Yi, δi), i = 1, 2, · · · , n. (1.1)

All the covariates Xi are observed, and δi = 1 if Yi is observed, otherwise δi = 0. Suppose that the

mean of Y , µ = EY , would be estimated under the assumption of MAR, that is, missing Y depends

mainly on the covariate X

P(δ = 1|X, Y) = P(δ = 1|X) = p(X). (1.2)

The missing pattern function p(x) defined under MAR is an analog of the well-known propensity

score p(x, α) of parametric inference, which is traditionally termed as “propensity to be exposed

to a treatment” (Rosenbaum and Rubin, 1983). Without assuming a parametric likelihood model

or a parametric regression model together with a propensity model, a nonparametric approach to

estimating µ depends on effective estimation of both the regression function m(x) = E(Y |x) and the

propensity score p(x), such that proper imputation can be used to make up for the loss of incomplete

data information.

2



There are two basic approaches to nonparametric imputation. The nonparametric regression

weighted estimation and the classical Horvitz-Thompson (HT) inverse weighting estimation. The

regression method imputes a missing value (Yi, δi = 0) with a weighted regression estimate for m(Xi),

and also a similarly weighted estimate for p(Xi). The HT method weights each observed response

(Yi, δi = 1) by the inverse of an estimated probability of observation to reflect a proper sample size.

Under MAR, the estimated probabilities are the estimated propensity scores p(Xi) based on the non-

parametric inference frame (1.1) and (1.2).

A basic nonparametric regression imputation is the kernel-weighted regression (KR) estimator

introduced by Cheng and Wei (1986):

µ̃ =
1
n

n∑
i=1

m̃(Xi)

=
1
n

n∑
i=1


n∑

j=1

Wh(Xi, X j)δ jY j/

n∑
j=1

Wh(Xi, X j)δ j

 . (1.3)

The regression function is estimated by m̃(x), W is a symmetric probability density function (pdf),

and Wh(u, x) = h−1W((u − x)/h). An analog of (1.3) is

µKR =
1
n

n∑
i=1

{δiYi + (1 − δi)m̃(Xi)}. (1.4)

Estimators (1.3) and (1.4) were proved to be asymptotically equivalent as they approximate the same

normal distribution under the same regularity conditions on the regression function, the propensity

score and the kernel bandwidth h (Cheng, 1994). This asymptotic normality has also been proved

using the empirical likelihood approach, see for example, Wang and Rao (2002).

The idea of using kernel regression weights was also applied to define nearest neighbor (NN) re-

gression weights, for example, Cheng (1984, 1994). For a finite positive integer K, an NN imputation

estimator is defined as

µNN =
1
n

n∑
i=1

{δiYi + (1 − δi)mK(Xi)}. (1.5)

Here mK(Xi) = 1
K
∑K

j=1 Yi( j), and {(Xi( j),Yi( j)) : δi( j) = 1, j = 1, · · · ,K} is a set of K observed data

pairs, and Xi( j) denotes the jth nearest neighbor to Xi among all the covariates X’s corresponding

to those Yk’s with δk = 1. The imputed kernel estimates m̃(Xi) of (1.4) are replaced by the nearest-

neighbors estimate mK(Xi) in (1.5), and the kernel bandwidth h is replaced by a random distance

defined between the covariates.

The classical HT weighting scheme recovers the incomplete data information by inverting the

sampling weights to reflect the effective sample size. Under MAR, a basic HT imputation estimator
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of µ is defined by inverting the estimated propensity score:

µHT =
1
n

n∑
i=1

δiYi

wi
, (1.6)

where wi = p̃(Xi) =
∑n

j=1 δ jWh(X j, Xi)/
∑n

j=1 Wh(X j, Xi) estimates the propensity score p(Xi) using

the same kernel smoothed estimate as defined by (1.3). Alternatively, the sample size n in (1.6) can

be replaced by an adjusted total, that is, a ratio estimate of the effective sample size. This yields the

commonly-used HT ratio estimator:

µHTR =

 n∑
i=1

δiYi/wi

 /  n∑
i=1

δi/wi

 . (1.7)

The ratio estimator is generally preferred to the naive estimator with complete data and, whether any

difference could exist with the analysis of missing data will be examined later in a simulation study.

It is notable that Robins, Rotnitzky and Zhao (1994) used the HT inverse probability weighting to

estimate a semiparametric regression function m(x, β) when some covariates are missing at random.

A remarkable advantage is that the method is asymptotically efficient, when either the parametric

regression model m(x, β) or the propensity score model p(x, α) is correctly specified. This is termed

the double-robustness (DR) property by Scharfstein, Rotnitzky and Robins (1999), and it has been

extensively used with semiparametric inference. Thereafter, the DR property has attracted much

discussion, for example, Robins and Rotnitzky (2001), Carpenter, Kenward and Vansteelandt (2006),

Kang and Schafer (2007), and Qin, Shao and Zhang (2008). Kang and Schafer (2007) questioned

whether the DR property could be lost when both models are not correctly specified. Nevertheless,

the possible failure of consistent estimation was remarked when the inverse probability weights are

highly variable (Robins, et al., 2007).

In contrast, a nonparametric analog of the DR property, coined the Robins-Rotnitzky-Zhao esti-

mator, was formulated by Carpenter, et al., (2006, formula (5)), and also by Qin, et al., (2008, p. 798).

Without parametric modeling, a nonparametric analog of the DR property requires both the regression

function and the propensity score be ideally smooth functions. In the literature, a polynomial regres-

sion function and a logistic-type propensity score have been used in many simulation studies under

semiparametric modeling. This modifies the basic HT estimator (1.6) by defining a nonparametric

doubly-robust HT estimator as

µDR =
1
n

n∑
i=1

[
m̃(Xi) +

δi{Yi − m̃(Xi)}
wi

]
, (1.8)

where m̃ and wi are the estimates of m(x) and p(x) in (1.3) and (1.6), respectively. Clearly, estimator

µDR modifies µ̃ of (1.3) by using inversely weighted regression residuals. This motivates the definition
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of a nonparametric DR property in the sense that the nonparametric DR estimator µDR can be efficient

so long as either the regression function m(x) or the propensity score p(x) is sufficiently smooth. When

both m(x) and p(x) are ideally smooth, it can be expected, as evidenced in a simulation study, that all

the imputation estimators using the same kernel-estimated weights yield comparable performance to

µDR in terms of the bias, the MSE, a standardized z-score and the coverage probability of confidence

intervals. In this case, the NN imputation estimator µNN could yield larger sampling variance, hence

larger MSE when using a smaller K for convenience. In view of the previous remark on the failure

of the parametric DR property (Robins, et al., 2007), it is of interest whether the nonparametric

estimator µDR is surely preferred to the NN estimator µNN when both m(x) and p(x) are smooth and

well estimated by the kernel method. This will be examined using a comprehensive simulation study

in Section 3.

This study will address two issues. The first goal is to prove a basic asymptotic normality for the

NN imputation using a multivariate covariate, while similar results in the literature were given with

a univariate covariate, e.g., Shao and Wang (2008). Section 2 proves Theorem 1 that distinct normal

approximations for the NN and the KR imputation are achieved under identical regularity condi-

tions. This characterizes the difference in the asymptotic variance between the two local-weighting

schemes that has not been well illustrated in the literature. The case 1 simulation study of Section

3 calibrates this difference, and shows that all the methods except the NN are comparably efficient

under ideally regular conditions. In contrast to Theorem 1, the second goal of this study is to ex-

amine the difference in performance between the NN imputation and the other imputation methods

when the regularity conditions of Theorem 1 are not satisfied. From the simulation study case 2, it is

found that among all imputation methods using kernel estimated weights, the DR estimator µDR and

a nearest-neighbors (NN) modified estimator µDR2 (to be defined in Section 3) yield the most stable

performance in terms of the MSE and the z-score, being insensitive to discontinuity in the propensity

score. When the propensity scores vary widely across the mixture distribution of the covariate as in

the case 3 simulation, estimators using the NN imputation with a small K, 1 or 2, become highly

competitive. They yield the best performance in terms of smaller MSE and more accurate coverage

probability of confidence interval for the true mean, while the NN-modified estimator µDR2 becomes

the second best in the same simulation study. Section 4 will apply the imputation estimators to two

datasets using simulated MAR designs. For the orthodontic growth dataset of size 27 (Potthoff and

Roy, 1964), a miniature simulation study was conducted to resemble the case 3 simulation study,

yielding expected computational results. For the iris flower dataset (cf. Fisher, 1936), similar simula-

tions were conducted for studying the accuracy in classifying the three species and for estimating the

species proportions. The NN imputation method obtains better classification accuracy than the KR

method does under general missing data mechanisms. In both empirical studies, the NN imputation

5



with a small K, 1 or 2, presented the best performance. It is well known that the NN method differs

from the others in using a random distance as a variable bandwidth defined by the covariate distribu-

tion instead of a constant bandwidth. While a proof for a general joint distribution under the MAR

condition is beyond the scope of this study, it is examined by computation that the NN imputation

could be less sensitive to the variation in the propensity scores and the unknown covariate distribution.

2 Nearest Neighbor Imputation

The K-nearest neighbor (K-NN) decision rule due to Fix and Hodges (1951) has been widely used in

pattern recognition. Logtsgaarden and Quesenberry (1965) applied it to yield consistent estimation

of a probability density function, and Cover and Hart (1967) discussed admissibility of 1-NN classi-

fication rule. In various scientific computing environments, K-NN estimation has been widely used

to study classification with multivariate data. Nearest neighbor rules in statistical estimation were

discussed with hot-deck imputation (Sande, 1979), and nonparametric regression (Cheng, 1984). In a

study of the KR imputation, the use of K-NN imputation was remarked by Cheng (1994). Methods of

NN imputation were also studied by Lee, et al. (1994), Rancourt (1999), Chen and Shao (2000, 2001),

and Shao and Wang (2008). Most of these studies discussed missing responses in a nonparametric or

semiparametric regression model with a 1-dimensional covariate X.

The KR imputation estimator (1.4) and the NN estimator (1.5) are constructed by locally-weighted

nonparametric regression, but differ in the statistical distance used. With small or moderate sample

size n, the KR imputation may find difficulty in using the local-bandwidth weighting with sparse

high-dimensional data. In contrast, the NN imputation uses a random statistical distance between the

covariates. Thus, the NN rule is basically unaffected by discontinuity of p(x), sparse data or multi-

dimensional covariate X. Computations for such cases will be illustrated in the simulation study of

Section 3.

Asymptotic normality for the NN method has not been fully discussed in the literature when the

data are incomplete. It is known that like KR estimation using a small bandwidth, the estimator µNN

using a small K would yield negligible bias in estimating µ, but a larger variance. In theory, asymp-

totic variance can only be derived under regularity conditions (ideal smoothness) of the regression

function m(x) and the propensity score p(x). Such asymptotic properties under regularity conditions

are typical facts of the kernel estimator µKR, and the HT type estimators µHTR and µDR, but not well

studied for the NN estimator µNN in the literature. Compared to the asymptotic normality of the

KR estimator µKR (Cheng, 1994), a less asymptotically efficient result for the NN estimator µNN is

obtained under essentially the same regularity conditions of the joint distribution. This is given in

Theorem 1 below.
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Theorem 1. Assume EY2 < ∞ and that the conditional variance function σ2(x) = Var(Y |x), the

regression function m(x), and the propensity score p(x) are finite and first-order differentiable. Then,

the NN imputation estimator µNN of (1.5) yields the approximation in distribution:

√
n(µNN − µ)→ N(0, σ2(µNN)), (2.1)

as n→ ∞ where

σ2(µNN) = Var(Y) + (1 +
1
K

)E[σ2(X)(1 − p(X))] + E
[
σ2(X)(1 − p(X))2

p(X)

]
. (2.2)

The proof of Theorem 1 will be given in the Appendix. Under the same conditions of Theo-

rem 1, the kernel-weighted regression imputation estimator µKR yields the asymptotic distribution

N(0, σ2(µKR)) (Cheng, 1994, Theorem 2.1), where the asymptotic variance is

σ2(µKR) = Var(Y) + E
[
σ2(X)(1 − p(X))

p(X)

]
. (2.3)

The difference between the two asymptotic variances of (2.2) and (2.3) is

σ2(µNN) − σ2(µKR) =
1
K

E[σ2(X)(1 − p(X))]. (2.4)

Computational effects of Theorem 1 and equation (2.4) will be examined and illustrated in the case

1 simulation of Section 3. The statistical distance plays a key role in the NN imputation, allowing

flexible choices such as the Euclidean distance, the Mahalanobis distance, whichever is appropriate

to the data joint distribution. As a random distance between the covariate variables, it alleviates the

constraint of using an optimal constant bandwidth in the KR method, particularly with a mixture,

multi-dimensional or sparse distribution of the covariate X. With a small K, a K-NN imputation

estimator generally yields smaller bias but larger variance compared to those of the KR imputation.

Nevertheless, it usually yields smaller MSE, when the distribution of the covariate is a mixture. This

will be exemplified in the case 3 simulation of Section 3.

It may be expected that a modification of the weights of the NN estimator µNN of (1.5), assigning

unequal weights to the K nearest neighbors, for example, using a bell-shaped unimodal kernel, could

possibly reduce the sampling MSE. Because no significant reduction of MSE was found from the

computation in each case study, the weighted-distance NN estimation will not be discussed. In Section

3, three cases of simulation study are defined using smooth regression functions, and smooth or

discontinuous propensity scores, and mixture covariate distributions are examined. It is remarkable

that the NN imputation (using a proper K) can yield stable performance in terms of the MSE and

the coverage probability of confidence interval, compared to the imputation methods using kernel-

estimated weights with proper bandwidths.
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3 Simulation Study

Three cases of simulation study were conducted to evaluate the performance of the aforementioned

imputation methods. A common regression model was used in each case

Y = m(X) + ε, (3.1)

where the error variable ε is independent of X and distributed as standard normal. Varied distribu-

tions of the covariate X and the propensity score p(X) were defined with the regression model (3.1).

Random samples of sizes n = 50, 100, 500 were generated in each case. Six imputation estimators

for the population mean µ = EY were computed using 1,000 replications in each case. They were

compared in terms of the average bias, the MSE, the z-score (ZS denotes the ratio of the average bias

to the standard error estimate), and the coverage probability of confidence intervals (denoted by CCI)

for µ = EY . These statistics were computed from the simulated samples and are reported in Tables 1

to 3.

1. The K−NN estimator µNN of equation (1.5) is used with K = 1, 2, 4, 8 in each simulation, plus

four larger multiples of 4 in cases 1 and 2.

2. The kernel regression (KR) estimator is defined by equation (1.4) using the well-known Epanech-

nikov quadratic kernel function

W(t) =
{

0.75(1 − t2), for |t| ≤ 1,
0, otherwise.

When
∑n

j=1 Wh(Xi, X j)δ j = 0 and p̃(Xi) = 0, there is no candidate donor within one bandwidth

of the covariate Xi associated with a missing response. Then, no value would be imputed for

the missing response, and the actual sample size used in this computation could be less than n.

3. The same kernel function with the selected bandwidths was used with the KR estimator µKR,

the HT estimator µHT , the HT ratio estimator µHTR, and the nonparametric DR estimator µDR.

4. For the DR estimation, two imputation schemes were designed in situations where
∑n

j=1 Wh(Xi, X j)δ j =

0: (1) as for µKR, no imputed value was used, denoted by µDR; (2) impute a value, which is the

average of two observed Y ′j s of the two nearest covariate X′js to Xi, denoted by µDR2.

The first set of simulations, case 1 below, is used to evaluate Theorem 1, where both regression

function m(x) and propensity score p(x) are first-order differentiable.

Case 1


m1(x) = 2x,
p1(x) = e2.5x

1+e2.5x ,

X ∼ U(0, 1),
E(Y) = 1, E(Yobs) = 1.0956, P(δ = 1) = 0.7543.
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Table 1 reports the average bias, MSE, ZS and CCI out of 1,000 replications in computing the

estimators for the simulation study of case 1. With smooth m(x) and p(x), most estimators exhibit

uniformly small bias and MSE, stable CCI, giving consistent estimation with imputation, which seems

to be unaffected by the slight difference between the true mean E(Y) and the observed mean E(Yobs).

For a wide range of bandwidth values (h=0.20, 0.15 and 0.05 corresponding to n=50, 100 and 500,

respectively) all bandwidth estimators yield comparable MSE and CCI, except that larger z-scores

(ZS) may occur with large bandwidths or K. The NN estimator yields slightly larger MSE in general,

but gives the smallest bias with smaller K such as 1 and 2. Table values for larger K such as 16, 24

and 32 were computed to yield smaller variance or MSE, particularly for the case when the sample

size is 500 or larger. Here, the asymptotic variance of equation (2.2) is σ2(µNN) = 1.7005+0.2457/K

which approximates σ2(µKR) = 1.7005, that of equation (2.3). It is notable in Table 1 that the MSEs

of the NN method also approximate those of the KR method as K tends to infinity, in accordance with

equation (2.4) of Theorem 1.

Table 1 about here

Next, in case 2, a quadratic polynomial m(x) and a piecewise constant propensity score p(x) are

used. The purpose is to examine any adverse effect due to discontinuity in the propensity.

Case 2



m2(x) = 3 − 6(x − 0.6)2,

p2(x) =


0.8, 0 ≤ x ≤ 0.3,
0.2, 0.3 < x ≤ 0.7,
0.8, 0.7 < x ≤ 1,

X ∼ U(0, 1),
E(Y) = 2.44, E(Yobs) = 2.26, P(δ = 1) = 0.56.

Values in Table 2 given by the simulation case 2 generally present consistent estimation. The

basic HT imputation estimator µHT yields the poorest performance among all, showing that it is most

sensitive to discontinuity in the propensity score p(x). With an adjustment of sample size, the ratio

HT imputation µHTR corrects the drawback and yields similar performance to the other estimators.

The NN imputation gives satisfactory performance when K is greater than 1, and it yields the smallest

bias but larger variance hence larger MSE when K = 1. Here, the values of ZS and CCI vary more

widely than those in the ideal case 1, and are unsatisfactory with bandwidths larger than 0.20 or larger

K; this is essentially due to discontinuity in the propensity score.

Table 2 about here
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Case 3 differs from cases 1 and 2 by defining the covariate X as a mixture of two uniform distri-

butions. It is designed to test the performance stability of the nonparametric imputation methods by

putting heavy missingness on the data region of one component of the mixture distribution of X. The

simulation is defined as follows.

Case 3


m3(x) = 2x + 1,

p3(x) =
exp(2.5x)

1+exp(2.5x) ,

X ∼ 0.3U(−3, 0) + 0.7U(0, 4),
E(Y) = 2.9, E(Yobs) = 5.009, P(δ = 1) = 0.679.

Compared to the previous cases 1 and 2, the highly unbalanced missing pattern p(x) in the mixture

distribution of the covariate appears to present serious adverse effect on the estimators using kernel

bandwidths. Consistent estimation may not be secured if the values n·MSE increase steadily with

n. In this case, estimators µHT , µKR, µHTR, and µDR tend to give larger average bias, MSE and ZS,

but smaller CCI as compared to the estimators µNN and µDR2. It is seen from Table 3 that the NN

estimator µNN with K = 1, 2 yields the best results, comparable to the estimator µDR2. Clearly, µDR2

costs more computation time in requiring a bandwidth h that roughly decreases from 1.5 to the range

(0.5, 0.8) as the sample size n increases from 50 to 500.

Table 3 about here

With unbalanced missingness in the mixture distribution of the covariate, it is natural to consider

using two different bandwidths, that is, a larger one for the sparse data region, and a smaller one for

the less-missing part. By using various combinations of two bandwidths h and two Ks in case 3, a

modified simulation study indicates that there are no apparent improvements. Details are given at the

author’s website www.stat.sinica.edu.tw/pcheng/.

4 Empirical Study

Two datasets with small to moderate sample sizes will be studied in this section. The first study

examines the performance of the imputation estimators with the small orthodontic growth dataset

where Theorem 1 and related asymptotic properties are invalid. For estimating a mean parameter

from this small dataset, the NN and the NN-modified DR estimators are found to be most effective

among all the imputation estimators under artificial MAR designs. The second study uses the iris

flower data (in the UCI Machine Learning Repository, MLR) and considers classifying the species

and estimating the proportions. It is seen that all the imputation estimators can be used to estimate

the proportions, but only the KR and the NN estimators can be used to classify the iris species under

various missing data mechanisms.
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4.1 Orthodontic Growth Data

The data in Table 4 (Potthoff and Roy, 1964) are orthodontic growth measurements for 11 girls and

16 boys. For each subject, the distance from the center of the pituitary to the maxillary fissure was

recorded at the ages of 8, 10, 12, and 14 years. Assuming the four distance measures were observed

from a multivariate normal distribution, Little and Rubin (2002, Table 11.4) examined the inference

for the linear regression parameters as if the data were incomplete. An artificial deletion mechanism

was designed to be MAR, specifically, values at age 10 years were deleted for cases with low values

at age 8 years. By analogy with their MAR design, we may assume that the finite population mean

of the 27 measures of all the boys and girls at age 14 is to be estimated using a similar MAR design.

Thus, measures at age 14 are the response Y values, and let those at age 12 be defined as the covariate

X values. Our goal is to examine the performance of the imputation methods in estimating µ = EY =

26.09. In accordance with formulae (1.1) and (1.2), let some Y values be deleted according to the

propensity score p(x) defined as

p(x) =
{

0.9, x < 25,
0.4, x ≥ 25.

(4.1)

Because of the small data size, n = 27, this deletion mechanism was only simulated 20 times. A

typical simulated missing data is presented in Table 4, where the deleted Y values are quoted in

parentheses. For these twenty simulated datasets, all of the previously discussed imputation methods

are computed and the results are summarized in Table 5. As in the previous simulation study of case

3, there was no clear advantage in using pairs of bandwidths h, one for the girls and another for the

boys, or pairs of K, when both observed x and y values were not sparsely distributed. Thus, the results

in Table 5 were reported using a single h and K for this simulated missing data analysis. By missing

a large proportion of the response values of the boys, but not of the girls, it is expected that the results

in Table 5 would resemble those in Table 3. Indeed, the NN estimator µNN , with K = 1, 2, and the

NN-modified estimator µDR2 yield the best results among all estimators.

Tables 4 and 5 about here

4.2 Iris Flower Data

The iris flower dataset is well known from the study of classification using linear discriminant analy-

sis (Fisher, 1936). The dataset consists of 50 samples from each of three species of iris flowers (iris

setosa, iris virginica and iris versicolor). Four features were measured from each sample, they are

the length and the width of sepal and petal, in centimeters; Scatter plots of the six paired features

are available in the MLR. The plots indicate that iris setosa is linearly separable from the other two
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species, which are not separable from each other. The attribute of interest is the species indicator

variable, denoted by Y , say, Y = 0 stands for iris setosa, Y = 1 for virginica and Y = 2 for versicolor.

The useful covariate is the predictor vector X = (X1, X2, X3, X4) of the four features (Sepal length,

Sepal width, Petal length, Petal width). In the context of machine learning, data measurements of

validation samples are used to supervise the training of a classifier, and then the unknown attributes

(species, response types) of the remaining test samples are classified as if they were missing com-

pletely at random (MCAR). It is however notable that both the attributes and the covariates in specific

data regions are used in training the classifiers, this is called feature extraction in supervised learning.

As a consequence of repeated sampling and training on the same data, such missing data mechanisms

may not be MCAR or MAR, but rather missing not at random (MNAR), which is also termed non-

ignorable missing in parametric inference (Little and Rubin, 2002). Without supervised learning, the

covariate X is used for selecting a validation sample at random, then the attributes of the test sample

are regarded as MAR, or MCAR if the sampling is independent of X. In this study, classification

accuracy for the iris flower species is examined using the KR and the NN imputation methods, and

compared under MAR and MCAR designs. Meanwhile, it is notable that the HT-type estimators can

by definition only estimate the species proportions or the species total counts, the latter take the same

value of 50 for each of the iris species.

The test accuracy of the KR and the NN imputation methods can be assessed and compared under

both MAR and MCAR designs. The MCAR design can be simply defined using a constant propensity

score p(x) as shown in Table 6. A typical MAR design on the attribute Y is defined and simulated

with a propensity score, for example,

p(x) =
{

0.7, x2 < 3.0,
0.1, x2 ≥ 3.0.

(4.2)

The feature x2, the Sepal width, was chosen as the covariate because its values spread across the

three species more evenly than the other three features. The simulation was repeated 500 times in

accordance with the data size 150, and the average observed sample size is 49. For each simulated

sample, missing attributes were imputed using the KR estimator µKR and the NN estimator µNN ,

respectively, and checked against the true attributes. The uniform density function was used as the

kernel for ease of computation. By using the feature x2, the bandwidth h = 0.9 and K = 1 yield

the least average number of test errors for the estimators µKR and µNN , respectively. The average

misclassified counts are reported in Table 6, where results obtained from other propensity scores are

also listed under both MAR and MCAR designs. The table values indicate that the NN method yields

better classification accuracy of the iris flower species than the KR method does. Under the MAR and

MCAR designs, the ranges of average misclassified errors can be wider than those obtained from the

analysis using a support vector machine with supervised learning, see for example, Gunn (1998).
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Table 6 about here

Meanwhile, in the same simulation study, all the imputation estimators were used to estimate

the same total count of 50 for each of the iris species, ignoring the data size of 150. The average

bias, variance and MSE out of 500 replications are reported in Table 7. The NN estimator µNN using

K = 1, the 1-NN estimator, yields the best performance among all. Imputation estimators µKR,

µDR, and µDR1 yield comparable results using bandwidths in the range [1.0, 1.5], which are better

with smaller bandwidths close to 1.0. The HT estimators µHT and µHTR yield poor results using

the bandwidth 1.5, in particular, the biases of the estimator µHT may not sum to zero, but µHTR

rectifies the drawback using a proper range of bandwidth. It is worth noting that the 1-NN and the

NN-modified DR estimator µDR1 (using the first nearest neighbor) can estimate the total count of iris

setosa without error. This happens even though the scatter plots (in the MLR) show that iris setosa is

linearly separable from the other species either by X3, the Petal length, or by X4, the Petal width; but

not by X2, the Sepal width, which is used to define the MAR design of this comparison study.

Table 7 about here

In summary, it is shown that under the MAR design the 1-NN imputation estimator presents the

best performance of both species classification and proportion estimation for the iris data.

5 Discussion

Nearest neighbor estimation has been widely used in studying classification and discrimination with

multivariate data where the source of information is often presented as a mixture distribution. This

study examines the performance of the NN imputation method in estimating a population mean of

incomplete responses and also in classifying the incomplete responses which are missing at random

depending on the covariate.

For estimating a population mean, Theorem 1 and simulation case 1 clarify the computational dif-

ference between the NN imputation and the KR imputation in terms of distinct asymptotic normality

properties which hold under ideal regularity conditions on the regression function and the propensity

score. All imputation estimators except the basic HT estimator are insensitive to discontinuity in the

missing pattern as shown by the case 2 simulation study. If the propensity score is unbalanced with

respect to the covariate distribution as defined in the case 3 simulation study, then only the NN esti-

mator and the NN-modified DR estimator can yield satisfactory performance. The same advantage

of these two imputation estimators is also evidenced in the empirical study of the small orthodontic

growth data.
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It is worth noting that classification methods using supervised learning are often evaluated when

the unknown attributes of the test samples may not be MCAR or MAR, but MNAR. In this study,

the KR and the NN imputation methods are applied to classify the iris flower species when the test

samples are defined under both MAR and MCAR designs. This confirms once again that the NN

imputation method yields the best classification accuracy of the iris flower species. In conclusion, a

future study of both KR and NN imputation methods when the data are MNAR will be worthwhile.
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Appendix: Proof of Theorem 1
The parameter to be estimated is µ = E(Y) and the K-NN estimator µNN is defined by (5). The

difference between the regression-type estimator µNN and µ can be expressed as

µNN − µ =
n∑

i=1

{δiYi + (1 − δi)mK(Xi)}/n − µ = R + S + T, (A.1)

where R =
∑n

i=1{m(Xi)−µ}/n, S =
∑n

i=1 δi{Yi−m(Xi)}/n. By first-order differentiability of the regres-

sion function m(x) and the propensity function p(x), a similar analysis to that for kernel regression

estimation (Cheng, 1994) yield that

T =
n∑

i=1

(1 − δi){mK(Xi) − m(Xi)}/n = T ′ + o(1/
√

n)

asymptotically in probability, with

T ′ =
1
n

n∑
i=1

(1 − δi)[
1
K

k∑
j=1

{δi( j)Yi( j) − m(Xi( j))}]. (A.2)

It is straightforward to see that E(R) = E(S ) = E(T ′) = 0,

nVar(R) = Var(m(X)), (A.3)

and

nVar(S ) = E[p(X)σ2(X)]. (A.4)
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To compute the approximate formula of Var(T ), or Var(T ′), it is more clear by writing the square as

a product before taking the expectation:

(T ′)2 =
1
n2

n∑
i

n∑
j

(1 − δi)(1 − δ j)

 1
K

K∑
k=1

{δi(k)Yi(k) − m(Xi(k))}


×
 1
K

K∑
k′=1

{δ j(k′)Y j(k′) − m(X j(k′))}
 (A.5)

In (A.5), consider for each i, δi = 0, i = 1, 2, · · · , n, the expectation of the conditional distribution

of the product {δi(k)Yi(k) − m(Xi(k))}{δ j(k′)Y j(k′) − m(X j(k′))} having δ j = 0, given that Xi(k) = X j(k′) and

δi(k) = δ j(k′) = 1. This includes the identical terms having j = i and those having j , i, which yield all

the non-zero terms of conditional variance that are contained in the product (A.5). By smoothness of

the conditional variance function σ2(x) and the propensity function p(x), it can be derived from (A.5)

that

nVar(T ′) ≃ 1
K

E[{1 − p(X)}σ2(X)] + E
[
{1 − p(X)}2σ2(X)

p(X)

]
. (A.6)

Formula (A.6) corrects a previous error in the same asymptotic variance parameter given in Cheng

(1994, Remark 2.5). By a similar analysis to (A.6), it is straightforward to compute that

2nCov(S ,T ) ≃ 2E[{1 − p(X)}σ2(X)]. (A.7)

Taking the sum (A.3)+(A.4)+(A.6)+(A.7), the desired asymptotic variance is approximately

nVar(µNN) ≃ Var(Y) + (1 +
1
K

)E[{1 − p(X)}σ2(X)]

+E
[
{1 − p(X)}2σ2(X)

p(X)

]
. (A.8)

This verifies formula (2.2), hence (2.1), and concludes Theorem 1. It follows that the asymptotic

variance of kernel mean imputation (2.3) can be reached by letting K → ∞ in formula (A.8). That is,

under the same regularity conditions of smoothness on the propensity and regression functions, the

limiting asymptotic variance of µNN is equal to

σ2(µKR) = Var(Y) + E
[
{1 − p(X)}σ2(X)

p(X)

]
. (A.9)
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Table 1: Average bias, n·MSE, z-score and coverage of CI for Case 1

Sample Size n
Estimator 50 100 500

Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI
1 -0.004 2.07 -0.63 0.954 0.003 2.03 0.74 0.956 -0.004 1.96 -1.89 0.954
2 -0.005 2.00 -0.79 0.945 0.003 1.92 0.63 0.957 -0.003 1.73 -1.53 0.952

µNN 4 -0.001 1.92 -0.14 0.944 0.004 1.84 0.83 0.947 -0.002 1.63 -1.33 0.955
8 0.007 1.86 1.07 0.943 0.006 1.85 1.37 0.945 -0.003 1.60 -1.43 0.949
16 0.027 1.90 4.41 0.946 0.014 1.85 3.23 0.954 -0.002 1.59 -1.16 0.951
32 0.077 2.13 12.65 0.939 0.034 1.98 7.95 0.948 0.000 1.59 -0.25 0.949
0.05 0.001 1.97 0.16 0.949 0.004 1.85 0.92 0.947 -0.002 1.58 -1.14 0.953
0.15 -0.002 1.87 -0.29 0.947 0.006 1.80 1.42 0.949 0.001 1.58 0.79 0.952

µKR 0.20 0.000 1.84 0.06 0.945 0.009 1.80 2.13 0.95 0.004 1.58 2.36 0.95
0.30 0.007 1.82 1.19 0.944 0.016 1.83 3.88 0.954 0.012 1.64 6.51 0.947
0.05 -0.031 1.85 -5.11 0.946 -0.006 1.79 -1.45 0.949 -0.004 1.58 -2.06 0.956
0.15 -0.009 1.82 -1.50 0.948 0.002 1.77 0.40 0.946 -0.001 1.57 -0.41 0.955

µHT 0.20 -0.006 1.81 -1.07 0.948 0.004 1.77 0.95 0.949 0.001 1.56 0.58 0.953
0.30 -0.002 1.78 -0.33 0.945 0.009 1.77 2.22 0.948 0.006 1.56 3.25 0.95
0.05 0.013 1.98 2.02 0.944 0.010 1.87 2.32 0.943 -0.001 1.59 -0.61 0.949
0.15 0.002 1.88 0.36 0.945 0.008 1.82 1.93 0.946 0.002 1.58 1.02 0.95

µHTR 0.20 0.003 1.86 0.51 0.946 0.011 1.82 2.51 0.947 0.005 1.59 2.57 0.952
0.30 0.009 1.83 1.41 0.945 0.017 1.84 4.05 0.951 0.012 1.64 6.63 0.945
0.05 0.000 2.00 0.06 0.951 0.004 1.87 0.90 0.95 -0.002 1.59 -1.38 0.955
0.15 -0.004 1.90 -0.64 0.948 0.003 1.81 0.68 0.945 -0.002 1.58 -1.22 0.952

µDR 0.20 -0.004 1.87 -0.66 0.947 0.004 1.80 0.83 0.948 -0.002 1.58 -1.00 0.953
0.30 -0.003 1.84 -0.53 0.946 0.005 1.80 1.28 0.948 0.000 1.58 0.02 0.955
0.05 -0.005 1.99 -0.85 0.949 0.003 1.86 0.69 0.951 -0.002 1.59 -1.38 0.955
0.15 -0.004 1.90 -0.66 0.948 0.003 1.81 0.68 0.945 -0.002 1.58 -1.22 0.952

µDR2 0.20 -0.004 1.87 -0.65 0.947 0.004 1.80 0.83 0.948 -0.002 1.58 -1.00 0.953
0.30 -0.003 1.84 -0.53 0.946 0.005 1.80 1.28 0.948 0.000 1.58 0.02 0.955

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second
column. ZS is the z-score of standardized average bias, CCI is the coverage probability of confidence
intervals.
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Table 2: Average bias, n·MSE, z-score and coverage of CI for Case 2

Sample Size n
Estimator 50 100 500

Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI
1 0.006 3.55 0.72 0.953 -0.002 4.38 -0.28 0.952 0.004 4.10 1.41 0.954
2 -0.007 2.89 -0.96 0.952 -0.007 3.64 -1.09 0.949 0.003 3.46 1.16 0.953

µNN 4 -0.021 2.54 -2.98 0.95 -0.014 3.14 -2.48 0.956 0.003 3.11 1.08 0.954
8 -0.055 2.47 -8.13 0.939 -0.032 2.86 -6.13 0.952 0.001 2.86 0.59 0.955
16 -0.098 2.79 -14.38 0.92 -0.065 2.92 -13.02 0.935 -0.004 2.71 -1.51 0.959
32 -0.165 3.61 -24.70 0.89 -0.110 3.73 -21.88 0.903 -0.017 2.66 -7.63 0.945
0.10 -0.012 2.93 -1.56 0.948 -0.010 3.32 -1.78 0.949 -0.006 2.69 -2.47 0.953
0.15 -0.012 2.73 -1.64 0.955 -0.020 3.02 -3.63 0.947 -0.016 2.64 -7.16 0.943

µKR 0.20 -0.025 2.53 -3.48 0.953 -0.034 2.83 -6.45 0.948 -0.030 2.82 -13.72 0.926
0.25 -0.041 2.44 -5.95 0.942 -0.051 2.80 -10.01 0.938 -0.047 3.38 -21.81 0.885
0.30 -0.059 2.45 -8.67 0.937 -0.069 2.92 -13.94 0.927 -0.065 4.36 -30.63 0.84
0.10 -0.277 8.54 -28.58 0.855 -0.162 7.10 -24.25 0.893 -0.080 6.14 -32.97 0.818
0.15 -0.212 6.52 -22.87 0.899 -0.154 6.12 -25.17 0.889 -0.114 9.31 -48.39 0.654

µHT 0.20 -0.213 5.97 -24.70 0.886 -0.180 6.72 -30.37 0.846 -0.153 14.60 -63.40 0.5
0.25 -0.224 5.77 -27.84 0.873 -0.208 7.52 -36.70 0.8 -0.189 20.86 -77.37 0.315
0.30 -0.223 5.40 -29.14 0.863 -0.217 7.65 -40.04 0.775 -0.203 23.52 -84.95 0.246
0.10 -0.037 2.96 -4.83 0.944 -0.027 3.42 -4.66 0.945 -0.012 2.84 -5.09 0.949
0.15 -0.033 2.86 -4.43 0.953 -0.031 3.21 -5.47 0.947 -0.023 2.86 -9.87 0.934

µHTR 0.20 -0.042 2.71 -5.80 0.951 -0.042 3.05 -7.91 0.946 -0.036 3.15 -16.37 0.917
0.25 -0.054 2.59 -7.79 0.942 -0.059 2.99 -11.40 0.939 -0.054 3.81 -24.61 0.872
0.30 -0.069 2.56 -10.11 0.937 -0.076 3.06 -15.29 0.923 -0.072 4.85 -33.52 0.81
0.10 -0.008 3.06 -1.06 0.945 -0.005 3.58 -0.87 0.952 0.001 2.85 0.35 0.956
0.15 -0.001 2.98 -0.08 0.956 -0.007 3.34 -1.24 0.95 -0.001 2.71 -0.58 0.953

µDR 0.20 -0.003 2.79 -0.35 0.955 -0.010 3.11 -1.77 0.947 -0.004 2.63 -1.84 0.953
0.25 -0.009 2.63 -1.19 0.96 -0.015 2.91 -2.87 0.947 -0.010 2.56 -4.34 0.95
0.30 -0.019 2.50 -2.67 0.951 -0.026 2.77 -4.93 0.941 -0.021 2.62 -9.34 0.937
0.10 0.001 3.12 0.17 0.954 -0.004 3.60 -0.69 0.954 0.001 2.85 0.35 0.956
0.15 0.001 2.99 0.14 0.956 -0.007 3.34 -1.21 0.95 -0.001 2.71 -0.58 0.953

µDR2 0.20 -0.002 2.79 -0.30 0.955 -0.010 3.11 -1.77 0.947 -0.004 2.63 -1.84 0.953
0.25 -0.009 2.63 -1.19 0.96 -0.015 2.91 -2.87 0.947 -0.010 2.56 -4.34 0.95
0.30 -0.019 2.50 -2.67 0.951 -0.026 2.77 -4.93 0.941 -0.021 2.62 -9.34 0.937

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second
column. ZS is the z-score of standardized average bias, CCI is the coverage probability of confidence
intervals.

20



Table 3: Average bias, n·MSE, z-score and coverage of CI for Case 3

Sample Size n
50 100 500

K / h Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI
1 0.684 41.78 35.70 0.811 0.553 54.06 36.09 0.797 0.282 80.82 31.15 0.842
2 0.784 45.55 45.49 0.704 0.648 61.45 46.37 0.688 0.345 90.25 44.15 0.713

µNN 4 0.920 54.79 58.20 0.549 0.772 75.89 60.44 0.519 0.434 117.90 62.99 0.500
8 1.129 74.95 75.43 0.359 0.921 98.32 79.06 0.290 0.550 170.15 89.08 0.192

0.8 1.405 118.21 71.00 0.376 1.217 175.91 72.97 0.355 0.778 377.77 63.62 0.442
1.0 1.331 108.75 66.29 0.435 1.144 159.64 67.54 0.423 0.721 327.86 61.63 0.475

µKR 1.4 1.210 93.53 60.09 0.513 1.036 135.09 62.29 0.491 0.659 265.05 67.51 0.446
1.8 1.120 80.98 58.58 0.539 0.970 118.17 62.38 0.499 0.683 260.17 92.74 0.160
2.0 1.094 77.24 58.55 0.555 0.955 112.75 64.85 0.482 0.728 284.89 116.03 0.038
0.8 0.583 27.45 40.32 0.769 0.581 45.94 52.55 0.622 0.485 140.45 71.61 0.334
1.0 0.587 27.80 40.39 0.767 0.583 46.46 52.21 0.633 0.495 146.34 71.80 0.328

µHT 1.4 0.605 28.79 41.65 0.753 0.604 49.02 53.80 0.608 0.543 168.52 83.98 0.205
1.8 0.634 30.33 44.35 0.739 0.640 52.80 58.74 0.540 0.605 198.95 107.15 0.087
2.0 0.653 31.28 46.17 0.721 0.661 55.13 61.73 0.506 0.636 215.87 121.32 0.041
0.8 1.600 145.57 85.48 0.225 1.459 238.55 90.86 0.182 1.111 701.84 85.24 0.223
1.0 1.584 143.76 82.62 0.245 1.454 238.95 87.58 0.211 1.156 759.66 85.69 0.217

µHTR 1.4 1.585 144.19 82.07 0.244 1.493 250.25 90.05 0.178 1.300 923.21 103.54 0.121
1.8 1.611 147.01 86.66 0.206 1.552 264.00 101.92 0.101 1.444 1094.35 142.20 0.028
2.0 1.626 148.49 90.12 0.183 1.580 270.44 109.28 0.067 1.503 1169.48 169.22 0.008
0.8 1.381 115.33 69.17 0.397 1.184 168.67 70.10 0.385 0.720 336.82 57.80 0.513
1.0 1.293 104.48 63.27 0.468 1.094 149.65 63.29 0.470 0.637 277.01 52.32 0.601

µDR 1.4 1.139 86.68 54.50 0.580 0.950 120.65 54.53 0.584 0.536 201.98 49.54 0.655
1.8 1.016 72.10 50.17 0.638 0.851 100.41 50.91 0.636 0.534 178.70 62.74 0.505
2.0 0.975 67.29 49.02 0.641 0.823 93.08 51.65 0.631 0.570 189.59 77.60 0.304
0.8 0.742 43.50 41.57 0.746 0.612 58.29 42.31 0.733 0.320 85.45 38.62 0.781
1.0 0.738 43.35 41.11 0.747 0.611 58.36 42.18 0.738 0.332 89.34 40.01 0.759

µDR2 1.4 0.739 43.59 40.93 0.752 0.626 60.13 43.26 0.723 0.389 107.66 48.72 0.666
1.8 0.757 44.38 42.61 0.734 0.666 64.26 47.08 0.683 0.490 146.19 68.05 0.415
2.0 0.775 45.36 44.22 0.714 0.696 67.31 50.55 0.642 0.553 175.45 82.09 0.249

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second
column. ZS is the z-score of standardized average bias, CCI is the coverage probability of confidence
intervals.
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Table 4: Orthodontic growth data for 11 girls and 16 boys.

Age (in years) Age (in years)
Girl 12(X) 14(Y) Boy 12(X) 14(Y)

1 21.5 23.0 1 29.0 (31.0)
2 24.0 25.5 2 23.0 26.5
3 24.5 26.0 3 24.0 27.5
4 25.0 (26.5) 4 26.5 (27.0)
5 22.5 23.5 5 22.5 (26.0)
6 21.0 22.5 6 27.0 28.5
7 23.0 25.0 7 24.5 26.5
8 23.5 24.0 8 24.5 25.5
9 22.0 (21.5) 9 31.0 26.0

10 19.0 19.5 10 31.0 31.5
11 28.0 (28.0) 11 23.5 (25.0)

12 24.0 28.0
13 26.0 29.5
14 25.5 26.0
15 26.0 (30.0)
16 23.5 25.0

Sources: Potthoff and Roy (1964); Little and Rubin (2002).

Table 5: A simulated incomplete growth data analysis for estimating EY

K/h Bias Var n·MSE h Bias Var n·MSE h Bias Var n·MSE
1 -0.133 0.093 2.87 2.0 -2.757 4.300 315.57 2.0 -0.256 0.084 3.92

µNN 2 -0.182 0.071 2.71 µHT 2.1 -2.666 3.988 294.19 µDR 2.1 -0.192 0.104 3.66
4 -0.282 0.079 4.19 2.2 -2.559 3.826 274.94 2.2 -0.191 0.102 3.60
8 -0.367 0.080 5.68 2.5 -2.264 3.658 232.20 2.5 -0.189 0.099 3.51

2.0 -0.284 0.079 4.20 2.0 -0.321 0.109 5.60 2.0 -0.160 0.085 2.88
µKR 2.1 -0.225 0.098 3.88 µHTR 2.1 -0.322 0.099 5.35 µDR2 2.1 -0.141 0.092 2.90

2.2 -0.227 0.097 3.89 2.2 -0.321 0.093 5.16 2.2 -0.140 0.090 2.83
2.5 -0.233 0.097 3.95 2.5 -0.313 0.083 4.78 2.5 -0.138 0.087 2.74

Table values are based on 20 simulated datasets. Numbers of nearest neighbors are denoted by K, and
h is the kernel bandwidth.
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Table 6: A classification analysis for the iris flower data

Propensity Average Misclassification No. Average
Score KR/h=0.9 1-NN Missing No.

(0.7, 0.1) 5.0 3.0 100.8
(0.1, 0.7) 7.8 4.4 79.2
(0.7, 0.3) 3.7 2.7 82.2
(0.3, 0.7) 4.7 3.9 67.6

MAR (0.9, 0.4) 2.2 1.5 61.8
(0.4, 0.9) 3.1 3.0 43.8
(0.6, 0.4) 3.8 3.2 79.0
(0.4, 0.6) 4.4 3.9 71.9
(0.5, 0.5) 4.0 3.6 75.3

0.4 5.5 4.4 90.1
MCAR 0.5 4.0 3.5 75.2

0.6 3.1 2.7 59.9

Propensity scores are given by formula (4.2) under MAR, and are constants under MCAR. Table
values are based on 500 replications.
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Table 7: Average bias, variance and MSE in estimating the same total count of the iris species

Bias Variance MSE
K / h setosa virginica versicolor setosa virginica versicolor setosa virginica versicolor

1 0.000 -0.306 0.306 0.000 3.515 3.515 0.000 3.602 3.602
2 -0.001 -0.143 0.144 0.001 4.400 4.400 0.001 4.412 4.412

µNN 4 -1.285 0.934 0.351 20.547 25.108 4.977 22.156 25.929 5.091
8 -11.322 10.557 0.764 96.856 109.054 8.279 224.844 220.292 8.847

0.5 -1.679 8.253 -6.574 43.329 25.391 22.177 46.061 93.452 65.349
1.0 0.072 -0.003 -0.069 1.822 8.260 8.501 1.824 8.244 8.488

µKR 1.5 -0.032 1.452 -1.420 0.050 13.550 13.448 0.051 15.631 15.438
1.8 -0.477 3.727 -3.250 0.161 16.297 15.971 0.388 30.158 26.503
2.0 -2.194 6.321 -4.127 2.372 19.897 16.940 7.180 59.812 33.941
0.5 -7.837 -5.032 -14.886 124.265 15.764 28.739 185.431 41.049 250.290
1.0 1.128 -2.704 -3.666 52.068 6.463 21.243 53.235 13.764 34.643

µHT 1.5 1.175 -0.330 -1.651 30.708 9.193 14.865 32.027 9.283 17.560
1.8 0.234 1.794 -2.708 16.748 11.079 18.925 16.769 14.275 26.219
2.0 -2.051 3.298 -3.874 8.061 12.270 18.709 12.253 23.120 33.678
0.5 0.999 5.711 -6.711 93.006 47.977 39.562 93.818 80.500 84.515
1.0 2.782 -0.831 -1.951 26.149 14.113 17.489 33.838 14.776 21.260

µHTR 1.5 1.341 0.012 -1.353 12.094 12.890 15.051 13.868 12.864 16.852
1.8 0.415 2.080 -2.495 6.648 13.568 16.691 6.807 17.866 22.882
2.0 -1.216 4.284 -3.068 5.076 14.844 16.608 6.545 33.169 25.989
0.5 -1.703 8.173 -6.471 43.884 25.453 22.494 46.695 92.207 64.322
1.0 0.072 -1.167 1.095 1.822 6.484 6.714 1.824 7.835 7.901

µDR 1.5 -0.032 -1.762 1.793 0.050 10.919 10.845 0.051 14.000 14.040
1.8 -0.162 0.274 -0.112 0.437 13.939 13.173 0.462 13.986 13.159
2.0 -0.427 1.827 -1.400 1.851 16.619 14.307 2.030 19.924 16.238
0.5 0.000 0.631 -0.631 0.000 4.085 4.085 0.000 4.474 4.474
1.0 0.000 -1.874 1.874 0.000 5.469 5.469 0.000 8.970 8.970

µDR1 1.5 0.000 -1.780 1.780 0.000 10.860 10.860 0.000 14.008 14.008
1.8 -0.160 0.272 -0.113 0.431 13.922 13.184 0.456 13.969 13.170
2.0 -0.427 1.827 -1.400 1.851 16.619 14.307 2.030 19.924 16.238

Table values are based on 500 replications. Numbers of nearest neighbors are denoted by K, and h is
the kernel bandwidth.
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Table 3’: Double bandwidth for Case 3

Sample Size n
50 100 500

K1 / h1K2 / h2 Bias n·MSE ZS CCI Bias n·MSE ZS CCI Bias n·MSE ZS CCI
1 4 0.688 41.95 36.00 0.804 0.555 54.30 36.20 0.796 0.283 81.04 31.21 0.841

µNN 2 5 0.791 46.03 45.95 0.698 0.650 61.78 46.55 0.686 0.346 90.34 44.22 0.711
3 5 0.868 50.75 53.68 0.609 0.720 69.36 54.30 0.603 0.395 104.21 54.39 0.609

0.5 2.3 1.542 136.37 82.50 0.253 1.359 209.83 85.89 0.227 0.914 489.36 76.06 0.298
0.6 2.2 1.495 130.14 77.81 0.306 1.310 198.03 80.58 0.272 0.862 447.36 70.13 0.364
0.7 2.1 1.450 124.40 73.93 0.338 1.265 187.43 76.57 0.311 0.821 413.10 66.32 0.412
0.8 2.0 1.412 119.19 71.32 0.371 1.223 177.51 73.27 0.354 0.785 382.87 64.12 0.437

µKR 0.9 1.9 1.373 114.33 68.42 0.410 1.185 168.78 70.23 0.385 0.753 355.52 62.66 0.462
1.2 2.1 1.275 101.82 62.90 0.473 1.094 148.05 64.84 0.453 0.691 298.04 63.47 0.468
1.4 2.2 1.222 95.05 60.52 0.510 1.047 137.44 62.83 0.488 0.670 272.36 68.60 0.433
1.8 2.3 1.131 82.28 59.05 0.531 0.980 120.26 62.93 0.491 0.693 267.32 94.10 0.152
0.5 2.3 0.692 33.30 50.61 0.687 0.691 58.65 66.06 0.458 0.602 198.79 101.70 0.106
0.6 2.2 0.679 32.58 49.16 0.694 0.676 56.96 63.80 0.485 0.583 189.09 93.42 0.143
0.7 2.1 0.667 31.94 47.76 0.708 0.663 55.44 61.81 0.512 0.567 181.85 87.38 0.189
0.8 2.0 0.655 31.36 46.50 0.716 0.651 54.06 60.13 0.529 0.555 176.46 83.01 0.218

µHT 0.9 1.9 0.644 30.83 45.36 0.727 0.639 52.82 58.51 0.546 0.547 172.72 80.76 0.243
1.2 2.1 0.656 31.64 46.13 0.719 0.652 54.64 59.14 0.537 0.577 189.21 86.03 0.189
1.4 2.2 0.664 32.15 46.78 0.713 0.663 56.04 60.09 0.526 0.603 202.16 94.21 0.146
1.8 2.3 0.677 32.83 48.04 0.704 0.682 58.03 63.43 0.484 0.647 225.18 115.79 0.054
0.5 2.3 1.634 148.14 95.61 0.158 1.488 242.19 103.08 0.100 1.115 680.61 102.95 0.102
0.6 2.2 1.609 145.01 91.38 0.183 1.464 236.61 97.95 0.130 1.099 671.05 94.88 0.156
0.7 2.1 1.591 142.87 87.98 0.217 1.449 233.65 94.25 0.161 1.097 676.43 89.73 0.191
0.8 2.0 1.578 141.60 85.50 0.227 1.442 232.57 91.63 0.180 1.106 692.56 86.69 0.208

µHTR 0.9 1.9 1.572 141.13 83.72 0.234 1.439 232.87 89.34 0.200 1.125 718.44 86.10 0.222
1.2 2.1 1.565 140.61 81.93 0.240 1.456 239.08 88.41 0.197 1.218 827.06 93.22 0.175
1.4 2.2 1.572 141.74 82.46 0.235 1.482 246.35 90.83 0.175 1.294 913.77 105.00 0.113
1.8 2.3 1.604 145.66 87.03 0.204 1.547 261.92 102.56 0.094 1.441 1088.28 143.59 0.027
0.5 2.3 1.514 132.06 81.03 0.263 1.328 201.52 83.64 0.245 0.873 453.86 72.55 0.336
0.6 2.2 1.464 125.78 75.99 0.313 1.274 188.94 77.90 0.301 0.813 406.55 65.72 0.409
0.7 2.1 1.416 119.79 71.68 0.354 1.223 177.38 73.40 0.356 0.760 366.56 60.75 0.472
0.8 2.0 1.372 114.13 68.58 0.405 1.174 166.36 69.50 0.392 0.712 331.10 57.21 0.522

µDR 0.9 1.9 1.327 108.76 65.23 0.440 1.129 156.61 65.94 0.449 0.668 299.42 54.10 0.572
1.2 2.1 1.200 93.63 57.67 0.537 1.005 131.21 57.76 0.542 0.567 228.73 48.55 0.646
1.4 2.2 1.128 85.47 53.89 0.591 0.939 118.41 53.92 0.590 0.526 196.66 48.69 0.661
1.8 2.3 1.007 71.20 49.69 0.643 0.842 98.85 50.40 0.644 0.526 174.44 61.83 0.515
0.5 2.3 0.741 43.10 41.89 0.741 0.605 57.28 42.13 0.741 0.307 80.79 37.31 0.795
0.6 2.2 0.738 42.97 41.54 0.744 0.604 57.21 41.97 0.748 0.307 81.19 37.19 0.795
0.7 2.1 0.736 42.99 41.21 0.749 0.604 57.23 41.85 0.750 0.309 81.98 37.27 0.794
0.8 2.0 0.735 43.03 41.06 0.755 0.603 57.32 41.69 0.746 0.313 83.24 37.73 0.790

µDR2 0.9 1.9 0.734 43.03 40.87 0.760 0.604 57.46 41.72 0.748 0.318 85.16 38.36 0.780
1.2 2.1 0.728 42.86 40.25 0.761 0.606 57.78 41.76 0.743 0.346 93.61 42.13 0.741
1.4 2.2 0.729 42.96 40.30 0.760 0.616 58.86 42.51 0.731 0.380 104.04 47.52 0.677
1.8 2.3 0.748 43.80 42.08 0.743 0.657 63.16 46.47 0.691 0.483 142.36 66.94 0.436

Table values are based on 1,000 replications. Values of K and bandwidth h are listed in the second
column. ZS is the z-score of standardized average bias, CCI is the coverage probability of confidence
intervals.
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The Figure 1 and 2 can be found at the Wikipedia website

Figure 1: Iris flower data set, clustered using k means (left) and true species in the data set (right)
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Figure 2: The scatterplot of Iris flower data set
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