
894 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 6, JUNE 2009

MR Image Segmentation Using a Power
Transformation Approach

Juin-Der Lee, Hong-Ren Su, Philip E. Cheng*, Michelle Liou, John A. D. Aston, Arthur C. Tsai, and
Cheng-Yu Chen

Abstract—This study proposes a segmentation method for brain
MR images using a distribution transformation approach. The
method extends traditional Gaussian mixtures expectation-maxi-
mization segmentation to a power transformed version of mixed
intensity distributions, which includes Gaussian mixtures as a
special case. As MR intensities tend to exhibit non-Gaussianity
due to partial volume effects, the proposed method is designed to
fit non-Gaussian tissue intensity distributions. One advantage of
the method is that it is intuitively appealing and computationally
simple. To avoid performance degradation caused by intensity
inhomogeneity, different methods for correcting bias fields were
applied prior to image segmentation, and their correction effects
on the segmentation results were examined in the empirical
study. The partitions of brain tissues (i.e., gray and white matter)
resulting from the method were validated and evaluated against
manual segmentation results based on 38 real T1-weighted image
volumes from the internet brain segmentation repository, and 18
simulated image volumes from BrainWeb. The Jaccard and Dice
similarity indexes were computed to evaluate the performance
of the proposed approach relative to the expert segmentations.
Empirical results suggested that the proposed segmentation
method yielded higher similarity measures for both gray matter
and white matter as compared with those based on the traditional
segmentation using the Gaussian mixtures approach.

Index Terms—Box-Cox transformation, expectation-maximiza-
tion (EM) algorithm, Gaussian mixtures, statistical segmentation.

I. INTRODUCTION

I N CLINICAL and medical studies on brain anatomical
structures, a successful partition of images into gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF)
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is often an important first step. With high spatial resolution
and good soft-tissue contrast, brain images acquired via the
magnetic resonance (MR) techniques are well suited for this
purpose. For example, neurodegeneration in schizophrenic
patients as compared with a control group has been investigated
using MR images to measure the volume changes of gray
matter in thalamus, frontal and temporal lobes as well as CSF
in ventricles [1], [2]. It is also of considerable interest to study
regional volumes of GM and WM across different develop-
mental stages of the human brain [3], [4]. Lesion segmentation
is also another important application in clinical studies [5], [6].
There is a body of research in which image segmentation is
still supervised by professional experts on a slice-by-slice basis
which is not only labor intensive but also introduces large intra-
and inter-observer variability due to unresolved partial volume
effects. Therefore, it is highly desirable to apply automatic and
partial-volume corrected image segmentation when conducting
group comparison and longitudinal studies based on a large
volume of image data.

There has been a wide range of automatic segmentation
methods proposed in the literature. For example, the thresh-
olding approach partitions brain images using deterministic
values that separate tissue types according to intensity levels
[7], [8]. Warfield et al. have developed a brain image segmen-
tation algorithm which integrates the techniques of K-nearest
neighbors and image registration [9]. The fuzzy-based ap-
proaches generalize the K-means algorithm to allow for soft
segmentations such that each voxel can be assigned to more
than one class of tissue [10]–[14]. Fwu and Djuric have also
developed a tree-structure K-means algorithm to choose initial
cluster centers in the original K-means algorithm [15]. On the
other hand, the adaptive mean shift methods enable the inte-
gration of intensity and spatial features [16], [17]. Glass et al.
have used the Kohonen map and multilayered back-propagation
neural networks for segmentation in inversion recovery (IR)
images, which use the IR pulse sequence to provide strong
contrast between tissues that have different T1 relaxation times
[18]. Amato et al. have described a nonparametric discriminant
analysis method for multispectral MR image segmentation
[19].

The aforementioned methods all belong to the class of
nonparametric segmentation methods. Another branch of seg-
mentation methods relies on statistical classification. These
approaches assume that mixed voxel intensities reflect distinct
tissue groups, and individual voxels are assigned to different
groups through modeling the intensity histogram as a mixture
of probability distributions. For example, Ashburner et al. have
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Fig. 1. Comparison of Gaussian mixtures and power-transformation mixtures
on the IBSR image volume 13_3. (a) Histograms of CSF (magenta), GM (red),
and WM (green) along with the estimated distributions for CSF (white), GM
(cyan), and WM (yellow) using the Gaussian mixtures. (b) Histograms along
with the estimated distributions using the power-transformed mixtures.

proposed a modified version of the mixture model algorithm
for analyzing spatial distributions of tissue groups [20], [21].
Rajapakse et al. have proposed a Bayesian maximum a poste-
riori (MAP) model for image segmentation by incorporating
Markov random fields (MRFs) as spatial priors for tissue distri-
butions [22], [23]. Zhang et al. have further developed a hidden
MRF model to achieve a similar purpose [24]. Lemieux et al.
have segmented T1-weighted brain images into intracranial
CSF, GM, and WM using morphological operations and the
Gaussian mixtures [25].

The method proposed in this study falls into the class of statis-
tical segmentation algorithms. Statistical methods have often re-
lied on Gaussian assumptions for modeling the underlying dis-
tributions of CSF, GM, and WM. However, empirical results in-
dicate that tissue intensity distributions do not exhibit exactly a
Gaussian shape. As one example, Fig. 1(a) shows the tissue dis-
tributions based on manual partition of an image volume from
the Internet Brain Segmentation Repository (IBSR) . As indi-
cated in the figure, the histograms of GM (red) and WM (green)
are both skewed to the left. It indicates that the Gaussian mix-
tures fail to represent the skewed data. The GM component
(cyan) is overestimated and consequently the WM component
(yellow) is underestimated.

Due to limited imaging resolution, a brain voxel on the
boundary of different brain tissues may consist of more than
one tissue type, a phenomenon called the partial volume effect.
The non-Gaussian features in MR intensity distributions mainly
result from partial volume effects [26], [27]. The partial volume
effect is of importance in the extraction of brain tissue bound-
aries and quantitative measurement of brain structures, such as
abnormal WM multiple sclerosis and myelinated white matter
[28]–[31]. Partial volume effects can be addressed by separating
voxels containing multiple tissue types, called “mixels,” as ad-
ditional classes to pure voxel classes. The intensity of a mixel
is modeled as the proportional summation of the intensities of
the pure tissues within the mixel [32]–[37]. Cocosco et al. have
presented a nonparametric method to segment brain images
contaminated by partial volume effects [38]. Bullmore et al. has
developed a logistic discriminant analysis to tackle the problem
[26]. Instead of modeling mixel classes explicitly in addition

1http://www.cma.mgh.harvard.edu/ibsr/

to pure tissue classes, Ashburner et al. have assigned multiple
Gaussians for each pure tissue class to fit the non-Gaussian
intensity distribution of the pure tissue class [27].

By analogy, the method proposed in this study directly
models the varying shape of tissue distributions in order to
improve the final segmentation accuracy. Here we present a
statistical power transformation approach to solve the problem
of non-Gaussianity, without the cost of algorithmic com-
plexity. The proposed approach extends Gaussian mixtures to
power-transformed mixtures by incorporating a shape param-
eter, which is intrinsically useful for modeling non-Gaussian
image data. In order to estimate the parameters that best fit
the image intensity histogram, we suggest using a modified
expectation-maximization (EM) approach based on standard
maximum likelihood principles.

However, statistical segmentation can be problematic due
to existing within/between slice bias fields. Bias fields, also
called intensity inhomogeneity (or nonuniformity), generally
result from irregularities in both magnetic fields (B0) and RF
excitation fields, and also from variability in the magnetization
properties of brain tissues [23], [39]. The widely used models
for estimating bias fields have been developed by treating the
bias field as a smoothly varying multiplicative gain field. Images
are simultaneously segmented while the bias field is estimated
[40], [41]. Other methods attempt to remove the inhomogeneity
as a preprocessing step prior to actual segmentation. For ex-
ample, Sled et al. have introduced a nonparametric nonuniform
intensity normalization (N3) method which is independent
of tissue classes and thus can be applied to the MR image
before a tissue model is available [42]. As N3 addresses only
the smooth intensity inhomogeneity, Su et al. have proposed
a 3-D wavelet-based bias correction method [43]–[45] which
corrects for both the smooth intensity inhomogeneity and rapid
intensity variations, which refers to the average intensity of one
image slice being apparently higher/lower than another slice.
The relative performance of these two methods, together with
the proposed segmentation algorithm, will be examined.

It is often desirable to incorporate spatial priors into a tissue
classification scheme. In the literature, the 3-D Markov random
field (MRF) has been proposed for tissue classification which
assumes a Gibbs prior for the Gaussian mixtures [22], [23].
In the empirical study, we will consider the Gibbs prior for
the Gaussian mixtures and power-transformed mixtures. In
Section II, we review the conventional EM algorithm with finite
Gaussian mixtures. In Section III, we present the extended
EM approach in detail and give a step-by-step algorithm for
estimating model parameters. In Section IV, we give segmen-
tation results based on 38 real image volumes from the IBSR,
and 18 simulated image volumes from BrainWeb [46]–[48].
The segmentation performance is summarized by the Jaccard
and Dice indexes for different methods. The final two sections
contain discussion and concluding remarks, followed by the
appendix which details the derivation of the EM steps used in
the computational algorithm.

II. GAUSSIAN MIXTURES AND EM SEGMENTATION

Let the random observation be the intensity of the th
voxel in a brain region of interest. It is usually assumed that
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the intensity of the th tissue type follows a Gaussian distribu-
tion with mean value and variance . Let and

denote the parameters of Gaussian dis-
tributions. The Gaussian mixtures with tissue types can be
expressed as

where are the
weights of the tissue types, and

(1)

The unknown parameters

in the finite mixture model can be estimated using the maximum
likelihood estimation (MLE) method which is known to have
desirable asymptotic properties if the parameter estimates are
away from boundary values [49]. Let be the total number
of voxels, and be the set of voxel
intensities. The intensities are assumed to be independent,
but the assumption will be relaxed when using spatial models
such as the MRF model. The likelihood of the voxel intensity
data with unknown parameters is

(2)
The ML estimates are obtained by solving for the parame-

ters in the normal equations, which are derived from equating
to zero the first partial derivatives of (2) with respect to the un-
known parameters. For ease of exposition, hereafter, the same
notations will be used for both the conditional probabilities and
their estimates.

It has become a standard practice to use the EM algorithm
to maximize (2). Let be the posterior probability that
the random observation belongs to the th group. In the al-
gorithm, the E-step updates this posterior probability given the
latest estimates of and ; that is, in the th iteration, compute

(3)

The likelihood equations derived from (2) admit the poste-
rior probability . By inserting (3) into these
equations, the M-step simply computes the unknown parame-
ters as follows:

(4)

(5)

and

(6)

The EM algorithm simply iterates the E- and M-steps until the
sequence of parameter estimates becomes stable. The segmen-
tation is then obtained by assigning the th voxel to the tissue
type with the maximum posterior probability in (3).

It is desirable to incorporate spatial priors as contextual
constraints in a tissue classification scheme to improve seg-
mentation accuracy. The mixed Gaussian model combined with
Gibbs priors, the so-called MRFs, has been proposed to take
into account connectivity between neighboring tissue classes
(e.g., [22]–[24]). Because brain voxels of the same tissue type
are typically connected, MRFs are particularly suitable for
modeling brain tissue topology. In addition to the independent
voxel analysis given above, MRF analysis using the Gaussian
mixtures will also be included in the empirical study.

III. POWER TRANSFORMATION DISTRIBUTION

AND EM SEGMENTATION

Image segmentation methods based on mixture distributions
essentially model the intensity data as a finite mixture of K
tissue types. The segmentation based on the Gaussian mixtures
may not identify individual tissue types accurately when the dis-
tributions are not symmetric. In applications, manual segmen-
tations of real datasets by experts (e.g., IBSR) have indicated
that the intensity distribution of each tissue type need not be
symmetric. The intensity of individual tissue types may exhibit
varied spreads or skewed shapes between subjects that may not
be well fitted by a Gaussian distribution. Here, we present a
power transformation model that can be incorporated within an
EM procedure so as to increase the classification accuracy [50].

A. Power Transformation Distribution

In the literature, there are many transformations available for
non-Gaussian noise (e.g., [51] and [52]). For conceptual sim-
plicity, we consider power transformations. The power trans-
formation of a non-Gaussian positive-valued random variable is
defined to be

.

For appropriate , the transformed random variable ap-
proximates a Gaussian shape

where and denote the mean and variance respectively of
the transformed variable .

By variable transformation, we can express the probability
density function (PDF) of in terms of

(7)

where denotes the Gaussian density and is
the Jacobian of the transformation. The parameter controls
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the shape of distributions, that is, a distribution is symmetric
, left-skewed or right-skewed de-

pending on the values of . As a consequence,
in (7) is capable of fitting non-Gaussian data, while keeping the
Gaussian as a special case.

B. Power Transformation Mixtures Model

Each tissue intensity distribution can be expressed as a power
transformation distribution. The th tissue intensity distribution
is described as

(8)

The input intensity can be expressed as the mixtures of
tissue intensity distributions

(9)

In the model setup, the unknown parame-
ters are denoted by , where

, and
is redefined from (1) to include , thus

.

C. Parameter Estimation

The required parameter estimates are defined as those that
maximize the likelihood function defined in (2). To increase the
accuracy of the parameter estimation, we use a modified likeli-
hood function. The posterior likelihood of given is

(10)

In applications, a constrained prior is em-
ployed, where is the indicator function of the event .
Reasonable values of , the upper bound on the weight of the
th tissue type, are assigned in order to reduce the chance that a

particular tissue group with large dominates the likelihood.
It is well known that Gaussian mixtures are affected by partial
volume effects as the intensity of each individual voxel may ex-
hibit a mixed type. The constrained prior proposed in (10) is de-
signed to reduce the uncertainty of classifying individual voxel
types. As an illustration, the implementation of (10) for the CSF
can be carried out as follows. The CSF intensity on T1 images
often spread across a wide range at the lower end of the intensity
histogram and exhibits an overlap with the GM intensity, even
though its volume content is relatively small, usually much less
than ten percent of the common inner-skull brain area of interest
(cf. IBSR data). A constrained prior can be used
to improve the accuracy of segmentation between the CSF and
GM.

The posterior likelihood can be maximized using the EM al-
gorithm which treats the membership of voxels as unobserved
latent values. In the th iteration, the E-step computes

The M-step updates estimates using their weighted suffi-
cient statistics and the value. The membership
proportions are computed using

(11)

In case any , say , falls out of the given boundary
, is reestimated to satisfy the constrained prior under

the condition

The and estimates are computed as follows:

(12)

(13)

It has been well known that there is no closed-form solution
to [52], and the estimates for are updated by solving
the following equation for , in which the other parameters
are fixed at the updated values:

(14)
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Fig. 2. Typical plots of (a) ��� �, (b) ��� �, and (c) ��� �.

Equation (14) is a typical case of using (bounded) profile like-
lihood estimation with finitely many nuisance parameters [53].
Fig. 2 shows typical plots of . As shown in the plots,

is a continuous single-root function whose root can
be solved by the bisection root-finding method [54]. Based on
empirical experiments, we used an initial range of for the
bisection method for all of our validation data (i.e., real and sim-
ulated data).

Detailed derivations of terms in (11)–(14) can be found in the
appendix. The E- and M-steps are iterated until the sequence
of parameter estimates becomes stable. After the EM algorithm
converges, the parameters which
maximize the likelihood function are then used to classify image
voxels. Fig. 1(b) shows the fitted tissue distributions obtained
from the power transformation approach to the same image data
used in Fig. 1(a). It is clear that the power-transformed mixtures
fit the skewed data distributions more accurately than the stan-
dard Gaussian mixtures.

The segmentation algorithm can be summarized as the fol-
lowing pseudo-code:

set ;

initialize:

do

E-step:

calculate .

M-step:

estimate

until (convergence of the sequence of parameters is reached)

Compute the membership probability with the
estimated parameters.

Assign each voxel to the th class iff

It is also interesting to consider the spatial priors in the power-
transformed mixtures. In the empirical study, we assume the
Gibbs prior in the power-transformed mixtures (i.e., replacing
the Gaussian mixtures in (6) of [22] with the power-transformed
mixtures).

IV. EMPIRICAL STUDY

The IBSR has originally offered a collection of 20 real 3-D
T1-weighted image volumes with complete expert segmenta-
tions. These 20 volumes (i.e., 20 subjects’ brain images) of
coronal spoiled gradient echo MRI scans were acquired with
two imaging systems. The FLASH scans were performed on a
1.5-T Siemens Magnetom MR system (Iselin, NJ) with the fol-
lowing parameters: TR ms, TE ms, flip angle ,
field of view (FOV) cm, slice thickness contiguous
3.1 mm, matrix . The other 3-D-CARRY scans
were performed on a 1.5-T General Electric Sigma MR system
(Milwaukee, WI) with the following parameters: TR ms,
TE ms, flip angle degrees, FOV cm, slice
thickness contiguous 3 mm, matrix . These
images have been partitioned into off-brain structures, CSF,
GM, and WM by trained investigators using a semi-automated
intensity contour mapping algorithm [55]. The off-brain voxels
have been removed, and segmented CSF, GM, and WM have
been recorded for public reference. For the ease of exposition,
we classify the 20 image volumes into either an uncontaminated
group or a contaminated group depending on a preprocessing
procedure using N3 [42]. The image volumes that have not
shown significant differences between pre- and post-processing
results are grouped into the uncontaminated dataset I, and
otherwise grouped into the contaminated dataset II, including
those with rapid interslice intensity variation that cannot be
well corrected by N3.

The IBSR has newly supported an additional collection of
eighteen T1-weighted FLASH MRI volumes of better quality
and with slice thickness of 1.5 mm, but other than expert
segmentations, the scanning parameters are not given. Those
additional real datasets have been corrected by the IBSR
for bias fields using the CMA “autoseg” biasfield correction
routines (an interested reader may refer to the IBSR site for
details). In the sequel, we will refer the bias-corrected image
volumes as the preprocessed dataset III. The simulated image
volumes supported by BrainWeb have adopted the International
Consortium for Brain Mapping (ICBM) template with known
tissue types. The central peaks of the template distributions
are much higher than those of the Gaussian mixtures. The
proportions of Gaussian random noise can be generated by
the users with six degrees of noise contamination (i.e., pn0,
pn1, pn3, pn5, pn7, and pn9). With added Gaussian noise, the
simulated tissue distributions become nearly Gaussian. On the
other hand, the intensity nonuniformity (bias fields) can be
specified at three different levels (i.e., rf0, rf20, and rf40). A
combination of Gaussian random noise and bias fields gives
eighteen simulated image volumes having voxel dimension of
1 1 1 mm. We will refer to those simulated image volumes
as the simulated dataset IV. Our method does not contain the
process of removing nonbrain voxels. For the dataset III and IV,
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we obtained the skull-stripped volumes by masking out non-
brain voxels using their corresponding manual segmentations.

N3 has been shown to be one of the leading performers
for correcting bias fields [39], [56] and has virtually become
the standard method against other inhomogeneity correction
methods [57]. However, N3 does not take the rapid inter-slice
intensity variations into account. In the empirical study, we
compare not only N3 but also a 3-D wavelet-based bias cor-
rection method [43]–[45] which is useful for correcting not
only the smooth intraslice inhomogeneity, but also the rapid
interslice intensity variation. Specifically, a regular 3-D wavelet
transformation may not work well for correcting rapid interslice
intensity variation and smooth intraslice inhomogeneity simul-
taneously because bias fields are attributable to spatial signals
in lower frequencies, and interslice intensity variation are to
those of higher frequencies. In the 3-D wavelet-based method,
two separate wavelet transformations have been adopted with
one filter bank to correct for the inhomogeneity within 2-D
images, and with another filter bank along the slice direction to
correct for the rapid interslice intensity variation.

In the intraslice inhomogeneity correction, a complete de-
composition with the wavelet transform is carried out on each
slice. For example, if the slice has dimensions 128 128, then
a seven level decomposition is performed. The coarsest reso-
lution coefficient (the grand average) within each 2-D slice is
preserved for maintaining image scales. The next two levels of
coarse resolutions are set to zero to remove the intraslice inho-
mogeneity. The remaining levels are preserved intact.

Only one 1-D wavelet transform has been performed in the
interslice direction. This is applied to the wavelet coefficients
corresponding to the grand average of each 2-D wavelet de-
composition. Again a full decomposition is performed on these
coefficients. The top four levels in the decomposition corre-
sponding to the coarsest components are retained (including the
grand average in the interslice direction), and the rest of the
levels are set to zero to remove the high-frequency components.
These correspond to fluctuations in the grand averages between
slices, which are the cause of the interslice intensity variation.
The wavelet decomposition has been applied to the log inten-
sity scale images and these are transformed back to the original
scale after bias correction and interslice normalization.

To evaluate the relative performance between segmentation
methods, the standard Jaccard similarity indexes [35] have been
calculated. The index compares the results between manual seg-
mentations (provided by the IBSR) and automatic segmenta-
tions. Specifically, the Jaccard index, which measures the simi-
larity between two sets, is defined as

where and denotes the voxels of the th tissue type clas-
sified by our automatic method and the manual method, re-
spectively. The value of Jaccard index lies between 0, when
the two sets have no common elements, and 1, when the two
sets are identical. The Dice index has also been widely used
for comparing between existing methods in the literature [58].
There is a one-to-one correspondence between the two simi-
larity indexes, that is, Dice Index

. In order to compare with these published re-
sults, the Dice indexes have been calculated for evaluating the
18 simulated image volumes (provided by the BrainWeb).

In the empirical study, the tissue types of interest com-
prise CSF, GM, and WM, and thus was fixed at three.
This could be adapted to other values in applica-
tions, for example, by taking into account intermediate
tissue types (e.g., between GM and WM) due to partial
volume effects. We selected the same constraint bound-
aries as
across datasets. In the initialization step of the EM algo-
rithm, the tissue proportions were arbitrarily set to be

for the
three tissue types. Initial values for were selected to be

due to a common
trend of skewed GM and WM intensities. Image intensities of
voxels were sorted according to their magnitude and partitioned
into three groups according to . The initial values of and

were simply set to be the sample mean and variance of the
th group intensity, transformed according to , respectively.

A. Evaluation With the Uncontaminated Dataset I

Fig. 3 shows the Jaccard indexes of GM and WM segmen-
tations of the ten uncontaminated image volumes produced by
the proposed model and Gaussian mixtures. As a comparison,
the figure also gives results from the MRF model with different
combinations of Gaussian mixtures and power-transformed
mixtures. Across the ten image volumes, the average Jaccard in-
dexes for GM and WM are 0.69 and 0.55 based on the Gaussian
mixtures, and 0.82 and 0.73 based on the power-transformed
mixtures, respectively.

Fig. 3(b) lists Jaccard indexes of WM segmentations pro-
duced by Gaussian-MRFs proposed by Rajapakse et al. [22] and
power trans-MRFs, in which the Gaussian model is replaced by
its power transformed counterpart. The average Jaccard index of
WM segmentations is slightly improved from 0.71 to 0.72 by re-
placing Gaussian-MRFs with power trans-MRFs. On the other
hand, the average indexes of GM segmentations in Fig. 3(a)
suggest that the improvement is substantial, that is, the average
index for power trans-MRFs is 0.81 and for Gaussian-MRFs,
is 0.67. This variation can be attributed to the different spatial
complexities of GM and WM. Although for both GM and WM
tissues, voxels of the same tissue type are connected to one an-
other, GM is inherently much more tortuous than WM. Together
with the fact that the Gaussian model does not accurately rep-
resents the intensity distributions, the Gaussian-MRF tends to
over-smooth the segmentation. On the other hand, the better per-
formance of the power trans-MRF over Gaussian MRF can be
attributed to its accurate representation of intensity distribution.
However, due to the geometric complexity of GM, the power
trans-MRF does not outperform the proposed power transfor-
mation method.

In the literature, the atlas-based procedures have also been
recommended for image segmentation. With those methods,
partitioning of MR images into tissue types are supervised by
the prior segmentation of a large number of real MR images. As
a comparison, Fig. 3 also shows the segmentation results using
the SPM5 and MPM-MAP methods [27], [59]. Both methods
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Fig. 3. (a) The Jaccard indexes of GM segmentation on the uncontaminated
dataset I. The average Jaccard indexes are: Gaussian � ����, power trans. �
����, Gaussian-MRF� ����, and power trans-MRF� ����, 	
�� � �����,
MPM-MAP� ���
. (b) The Jaccard indexes of WM segmentation. The average
Jaccard indexes are: Gaussian � ����, power trans. � ����, Gaussian-MRF
� ����, and power trans-MRF � ����, 	
�� � ����, MPM-MAP � ����.

register image volumes to a standardized atlas before segmen-
tation and can be considered as modified versions of Gaussian
mixtures and Gaussian MRFs, respectively, by including a
prior on the spatial location of tissue types. The values of
MPM-MAP in Fig. 3 are based on published results [59], and
those of SPM5 are based on program implementations. When
implementing SPM5, the bias regularization parameter was set
to “no regularization” for the Dataset I, and other parameters,
to their default values. By considering a priori information,
MPM-MAP slightly improves upon the Gaussian-MRF, and
SPM5 drastically improves upon the conventional Gaussian
mixtures. On the average, however, the power-transformed
mixtures still outperforms other competing methods in classi-
fying GM voxels.

B. Evaluation With the Contaminated Dataset II

The ten contaminated image volumes contain either the
smooth intensity inhomogeneity, or rapid interslice intensity
variation. To keep the segmentation method simple, we did not
estimate the bias field within the proposed method. Instead, we
incorporated a bias correction method to remove contamination
before image segmentation.

Fig. 4 shows the results of applying the N3 and the wavelet-
based method to the image volume 4_8. It gives representative
orthogonal views of this contaminated dataset before and after
preprocessing. This image volume gives a classic example of
rapid interslice intensity variation—the slices in the posterior

Fig. 4. The upper row: one MR slice (viewed from different directions) in the-
contaminated image volume 4_8. The middle row: the same slice after prepro-
cessing using N3. The lower row: the same slice after the wavelet-based bias
correction.

region of the brain are much brighter than the other slices. As
the middle row shows, the rapid interslice intensity variation
remains presented in the images processed by N3.

Our segmentation method was applied to the preprocessed
images. The parameters were initialized in the same way as with
the uncontaminated dataset I. The Jaccard indexes of the seg-
mented GM and WM against manual segmentation are shown
in Fig. 5 which also shows the ensuing Jaccard indexes for GM
and WM segmentation produced by Gaussian mixtures. For the
wavelet based bias correction method, the average Jaccard in-
dexes achieved by Gaussian mixtures are 0.60 and 0.59 for GM
and WM, respectively. The average Jaccard indexes achieved
by the power-transformation method are increased to 0.75 and
0.65 for GM and WM, respectively.

Also shown in Fig. 5 are Jaccard indexes achieved by
Gaussian mixtures and the power-transformed mixtures using
N3 and wavelets in the preprocessing stage. The average Jac-
card indexes of Gaussian mixtures for GM and WM are 0.47
and 0.58, and of the power-transformation method are 0.70 and
0.56, respectively. The results of MRFs as compared with those
of the power-transformation approach are consistent with the
uncontaminated image volumes. The values of SPM5 (the bias
regularization parameter was selected to be “medium”), and
MPM-MAP are also listed for the contaminated images, and the
results suggest that SPM5 is more robust to bias contamination
relative to MPM-MAP.

Fig. 6 shows segmentation results for the image volume 1_24.
The power transformation approach took the wavelet bias-cor-
rected image (a) as the input image, producing estimated GM
probability image (b) and WM probability image (c). The final
segmentation (d) was formed by comparing probability images
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Fig. 5. (a) The Jaccard indexes of GM segmentation of the contaminated
dataset II. The average Jaccard indexes are: �� � �������	 
 ���
,
������� � �������	 
 ����, �� � ����� ���	�� 
 ��
�, ������� �
����� ���	�� 
 ��
�, ���� 
 ��
�, ������� 
 ����. (b) The Jac-
card indexes of WM segmentation of the contaminated dataset II. The average
Jaccard indexes are: �� ��������	 
 ����, ������� � �������	 
 ����,
�� � ����� ���	�� 
 ����, ������� � ����� ���	�� 
 ����,
���� 
 ���
, ������� 
 ����.

Fig. 6. The ensuing images of the image volume 1_24. (a) The bias-corrected
image is the input to the power transformation approach. (b) Estimated GM
probability image. (c) Estimated WM probability image. (d) Segmentation
formed by comparing probability images (b) and (c) on a voxel-by-voxel
basis and assigning each voxel the tissue class with the maximum probability.
(e) Manual segmentation.

(b) and (c) on a voxel-by-voxel basis and assigning each voxel
to the tissue class with the maximum probability.

C. Evaluation With the Preprocessed Dataset III

Fig. 7 gives the segmentation results for the eighteen newly
added image volumes from the IBSR. Because the preprocessed
images have been corrected for bias, the SPM5 bias correction
function was not applied to the Dataset III. On the average, the
power transformation approach still outperforms the existing

Fig. 7. Jaccard indexes for the preprocessed dataset III. (a) Average Jaccard
indexes for GM are: Gaussian 
 ��
�, power trans. 
 ����, Gaussian-MRF

 ����, power trans-MRF 
 ����, ���� 
 ���. (b) Average Jaccard indexes
for WM are: Gaussian 
 ��
�, power trans. 
 ��
�, Gaussian-MRF 
 ��
�,
power trans-MRF 
 ��
�, ���� 
 ��
�.

methods for both GM and WM segmentations, including con-
ventional Gaussian mixtures, MRFs with either the Gaussian
or non-Gaussian assumption, and the atlas-based method (i.e.,
SPM5). It is interesting to note that the Gaussian MRF model
gives comparable results as those by the power transformation
approach for the WM segmentation. However, the power-trans-
formed MRF model gives similar results as those by the power
transformation approach for the GM segmentation. This finding
is consistent with the results in Fig. 3. The power trans-MRF
method performs less well compared with other competing
methods in WM segmentation for a few image volumes in this
dataset. When comparing between results in Figs. 3 and 7, it is
interesting to note that the average accuracy of segmentation
methods is improved as the quality of image data becomes
better. This improvement is more notable for the power trans-
formation approach than for other competing methods.

D. Evaluation With the Simulated Dataset IV

As was mentioned, the template distributions are leptokurtic
and become nearly Gaussian with added random noise. The
bias fields in the simulated dataset were corrected using N3 be-
fore computing all methods except for SPM5. The “bias reg-
ularization” parameters in SPM5 were selected to be “none,”
“medium,” and “heavy” when segmenting the rf0, rf20, and
rf40 image volumes, respectively. In Fig. 8 we observe that
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Fig. 8. Dice indexes for the simulated dataset IV. (a) Average Dice indexes
for GM are: Gaussian � ����, power trans. � ����, Gaussian-MRF � ����,
power trans-MRF � ����, ���-�� � ���, MPM-MAP � ����, 	
�� �

����. (b) Average Dice indexes for WM are: Gaussian � ���
, power trans.
� ����, Gaussian-MRF � ����, power trans-MRF � ���
, ���-�� � ���,
MPM-MAP � ����, 	
�� � ����.

the Gaussian and power-transformed MRF models outperform
other methods for those image volumes seriously contaminated
by random noise (i.e., pn5–pn9). The proposed power transfor-
mation approach also works for the leptokurtic distributions.
It is interesting to note that the power-transformed MRF per-
forms better than its Gaussian counterpart for those pn0 and
pn1 image volumes. In the figure, the Dice values for the well-
known EM approach KVL are published results in Leemput
et al. [60]. The average Dice indexes of the eighteen volumes
for GM are: Gaussian mixtures, 0.89, power-transformed mix-
tures, 0.93, Gaussian-MRF, 0.94, power trans-MRF, 0.94, and
SPM5, 0.88. The values for KVL and MPM-MAP are pub-
lished results [59], and their averages are 0.90 and 0.92, re-
spectively, on the basis of those image volumes available in the
literature. The average Dice indexes for WM are: Gaussian mix-
tures, 0.86, power-transformed mixtures, 0.93, Gaussian-MRF,
0.94 and power trans-MRF, 0.96, and SPM5, 0.91. The average
Dice indexes for available data are 0.90 for KVL and 0.93 for
MPM-MAP.

V. DISCUSSION

We proposed a power transformation method to partitioned
MR skull-stripped brain images into CSF, GM, and WM. As in-

dicated in Fig. 1, the power transformation model fits the non-
Gaussian data better than does the Gaussian mixtures, which
explains the higher Jaccard indexes shown in Fig. 3. Across
the four datasets we have considered, the power-transforma-
tion approach consistently gives higher Jaccard indexes than the
Gaussian mixtures.

The non-Gaussian features in MR intensity distributions are
mainly due to partial volume effects. Existing MR segmenta-
tion work either ignores the partial volume effect, or explicitly
segments the mixels at the cost of considerable complexity in
the ensuing algorithm. The model presented here captures the
asymmetry of the non-Gaussian nature of the data in a straight-
forward manner. The power transformation introduces a shape
parameter to model the skewness of the distribution which in-
cludes Gaussian mixtures as a special case. It has negligible ef-
fect on the kurtosis, which could also be slightly influenced by
partial volume effects. However, the empirical results shown in
Fig. 1(b) suggest that histograms can be fitted well by taking
only skewness into account, without incorporating kurtosis in
the model.

Incorporating MRFs into the Gaussian mixtures can improve
WM segmentation results substantially, as revealed by the dra-
matically increased Jaccard indexes for WM in Figs. 3, 7 and
8. However, the power transformation model does not appear
to benefit from incorporating the MRF constraints. MRFs com-
pensate for lack of fit of the Gaussian intensity model to the
non-Gaussian histogram. If MRFs and power transformations
are combined together, the MRF competes with the power trans-
formation yielding over-fitting or over-smoothing, which re-
duces the similarity index. Thus the overall effect did not exhibit
improvement of the average accuracy except for the simulated
data with random Gaussian noise (see results in Fig. 8).

Our tissue segmentation method assumes that the images
are not bias-contaminated. In the empirical examples, we have
applied a wavelet bias correction method [43] to remove bias
fields from contaminated images before applying tissue seg-
mentation techniques. Except for the image volumes 5_8 and
6_10 in Fig. 5, which are seriously contaminated by interslice
intensity variation, the power transformation method tends
to be robust to a choice between bias correction methods as
compared with the Gaussian mixtures. Both N3 and the 3-D
wavelets give similar results when the power transformation
method is used for image segmentation.

Comparing between the auto-segmented result [Fig. 6(d)] and
the manual segmented result [Fig. 6(e)], we have noticed that
a substantial part of the midbrain is misclassified to GM. This
misclassification may heavily degrade performance of the WM
segmentation. The misclassification has less impact on the Jac-
card indexes for GM which distributes in a greater region than
does WM. A greater proportion of GM in the image volume
explains why the Jaccard indexes for GM are generally higher
than those for WM, because a small amount of difference be-
tween two sets leads to minor change in the overall indexes for
GM.

IBSR provides the Jaccard indexes of the segmentation re-
sults from several well-known segmentation methods, such as
bMAP [23], Fuzzy [11], and TSK-means [15]. Comparing be-
tween the average Jaccard indexes across the datasets I and II
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(bMAP: , , Fuzzy: ,
, TSK-means: , , the

power-trans method wavelet bias correction: ,
, the power-trans method : ,

) shows that the power transformation method has
outperformed other competitors in addition to those studied in
detail.

In addition to being accurate and robust, the proposed method
is also computationally efficient. The average computational
time of our algorithm, written in MATLAB, is 2 min on an Intel
P4 3.4 G computer. Performance of intensity-based methods,
such as the proposed method, can be affected by noise other
than bias fields; for example, small random noise yields scat-
tered local errors in most segmentation procedures. Without a
spatial prior, the proposed method introduced minor errors in
segmentation [Fig. 6(d)] as compared with results based on the
manual segmentation [Fig. 6(e)]. Observing that brain tissues
of the same type would be connected, we could reduce such
random noise by applying some spatial smoothing techniques.
However, as discussed earlier, using the MRF [22] may not lead
to an improvement in the average accuracy due to the competing
nature of the methods.

VI. CONCLUSION

Most statistical segmentation methods in the literature have
assumed that either the intensity distribution of each tissue type
is Gaussian, or the logarithmic transformation of the raw inten-
sity is Gaussian. However, the manual segmentation results pro-
vided by the IBSR suggested that intensity distributions of brain
tissues can be varyingly asymmetric and non-Gaussian. Instead
of setting up additional classes to model “mixels,” we proposed
a power transformation approach to perform automatic segmen-
tation of brain MR images into CSF, GM, and WM. It is in-
tuitively clear that the well-known Box-Cox power transfor-
mation model is able to provide a statistically meaningful and
useful solution to this problem. The shape parameter can be
used to extend traditional Gaussian mixture models further to
encompass not only Gaussian intensity distributions but also
non-Gaussian distributions. The parameters and can be es-
timated using the EM algorithm. We validated the approach
against four real and simulated datasets of normal brains from
the IBSR and BrainWeb. Any preprocessing bias-field correc-
tion method (e.g., N3 or 3-D wavelet-based bias correction) can
be easily incorporated into a pipeline framework for the pro-
posed method.

Experiments on real data from the IBSR have indicated
that the proposed approach achieves higher Jaccard indexes
compared with other methods currently in use. The power
transformation approach not only preserves the simplicity of
the Gaussian mixtures, but also has the potential to generalize
to multivariate versions adapted for segmentation using multi-
modality images (e.g., PD, T1, and T2 images). Although our
approach fails to benefit from the particular MRF model we
applied, incorporating other MRF models or spatial techniques,
such as atlas-based initialization and multiresolution analysis
[61], into the proposed approach could lead to interesting
alternatives. However, many automatic methods are susceptible

to problems similar to the MRF approach, and these have to be
resolved. These issues remain interesting research topics for
the power transformation image segmentation model.

APPENDIX

Let be a random voxel intensity observed from one of
brain tissue types. Suppose that intensity distribution of each
tissue type can be expressed as

where the parameters are denoted by
.

Because class membership is unobservable, we maximize
the conditional expectation of the complete data log-likelihood
given the observed values and the previous parameter values.

Let represents the expected log-likelihood, where
and

Given that , we then
obtain

In the E-step, the posterior probability that the random obser-
vation belongs to the th group is calculated using initialized
parameters

Adding a lagrangian multiplier, we get

At the M-step, we find new estimates for each parameter that
maximize given the E-step weights as fixed.
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New estimates for :

New estimate for

New estimate for membership probability

Insert under the constraint

Thus

New estimate for

These estimates become and that will be used
in the next estimation step.

Now, suppose that for . If any of them,
say , falls out of the boundary, we need to reestimate as
follows:

The constraint becomes . Insert the mod-
ified constraint into .

We then find the new estimates for that

Inserting into the constraint that , we
solve for

Then, we obtain

This concludes the computational algorithm.
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